

 MODEM MODAF Migration

 Providing an ontological foundation

Chris Partridge
February 2011

2

Contents
Preface ... 3

Executive Summary .. 4

Real World Analysis Overview ... 6

Background .. 6

State Type Succession pattern – real world analysis ... 12

Interaction Diagrams – real world analysis.. 20

Summary .. 29

IDEAS Detailed Technical Analysis ... 30

Introduction ... 30

State Type Succession pattern –real world analysis .. 30

Interaction pattern – real world analysis ... 49

Summary .. 58

Appendices ... 61

Appendix A – MODAF UML Behaviour Scope .. 62

Appendix B – State diagram as a mathematical structure – example definition 67

Appendix C – State machines as a formal structure in the UML Superstructure
Specification ... 68

3

Preface

This report on the MODEM project is in three sections:

1. An executive summary that explains the motivation for the MODEM work.

2. An introduction to the real world analysis that was done as part of the MODEM work, which

gives a deeper understanding of the ideas that underlie it and provides examples of their

use.

3. A detailed technical IDEAS analysis explaining the IDEAS MODEM model.

Each of the sections builds upon the previous section and is aimed at a different audience.
The first section is aimed at management who need to understand the basis for the MODEM
work. The second section is aimed at users who need to understand the issues that the
MODEM work raises without delving into the technical details of the IDEAS model. The third
and final section provides the detailed IDEAS analysis for the technical experts.

4

Executive Summary

Coalition operations are going to be a feature in the defence landscape for the foreseeable
future. Effective and efficient coalition operations require collaboration at all levels. The
IDEAS Group is a multinational project that aims to significantly improve collaboration at the
level of military enterprise architectures through the development of a data exchange
format. The purpose is to allow seamless sharing of architectures between the partner
nations regardless of which modelling tool or repository they use.

Prior to the start of the project, the partner nations used a variety of architectural
frameworks, tools and repositories and this made sharing of architectures a difficult manual
task. The group’s goal is to develop a standard foundation upon which each partner nation
builds its architectural framework, which will enable seamless sharing.

The group recognised that its most difficult challenge was to develop a format that worked
at the level of meaning; so that when deployed it gave assurance of a common
understanding of the data exchanged. With this requirement in mind, they developed the
tool and repository agnostic IDEAS Foundation and issued it in April 2009.

The next stage in the development is for the member nations to migrate their frameworks
onto the IDEAS Foundation. The US has now completed the migration of their DODAF
metamodel onto the IDEAS Foundation – producing DM2 (DODAF Metamodel 2) – and is
consolidating the revised model. Sweden has initiated the MODEM (MODAF Ontological
Data Exchange Model) migration project. Its goal is to migrate the MODAF metamodel (M3)
onto an IDEAS Foundation. When this is complete, the US DODAF and MODEM architectural
framework will have a common foundation.

Multi-National FrameworksMulti-National Frameworks

Current Situation Target Situation

IDEAS

extends

MODAF (MODEM) MetaModel
Extension

UML MetaModel

extends

MODAF (UML) MetaModel
Extension

extends

DODAF MetaModel (DM2)
Extension

IDEAS

extends

DODAF MetaModel (DM2)
Extension

Figure 1 - Migrating to a common ontological framework

This will establish a foundation to take the nations to the next level of unification – a core
for a unified defence enterprise architecture (EA) model. Clearly, there are many benefits to
this. Each nation would have greatly reduced maintenance costs as framework development
and change management would be shared between the nations. A single framework with a
single metamodel also represents a more attractive market to EA tool vendors and so would
increase choice, competition and quality.

5

Currently the MODAF metamodel is built upon the UML foundation. There are several issues
with this. It limits the vendors that can easily support MODAF to UML vendors. Furthermore
UML is not an ideal foundation for EA models. It originated from, and so was designed for, a
technical programming environment rather than enterprise architecture. One result is that
it has a number of technical features more suited to programming and systems
development, some of which can cause EA interoperability problems. In addition, it was not
designed to work at the level of meaning and so is unsuitable as a foundation in this project.

The migration from UML to MODEM will resolve these issues. NATO nations (and NC3A)
have expressed very forcefully the need for a non-UML based NAF (NATO Architecture
Framework) foundation. The migration will enable MODAF to meet the requirement from
NATO to have a NAF model without UML dependencies.

There is a significant investment in MODAF, both directly in the MODAF metamodel and
users’ models and indirectly in the investment in UML. The MODEM migration aims to
harvest and build upon this investment. The MODEM migration aims to:

 harvest the relevant features of UML and the MODAF metamodel and migrate them to

MODEM,

 winnow out the irrelevant technical features – particularly the constraints that were

stovepiping the UML metamodel and the MODAF metamodel built upon it,

 provide a clearer picture of the enterprise – one which reveals the common underlying

business patterns across what previously appeared as very different areas, and

 provide a migration path for the existing MODAF models.

This enables the partners using MODAF to take advantage of the significant historic
investment made in:

 the UML foundation without having to also take on the burden of irrelevant features and

constraints,

 the UML-based MODAF model, while also providing access to the improved features of the

new foundation, and

 the users’ existing MODAF models.

And to do this while moving to a more flexible foundation that provides a basis for
significantly improved collaboration at the level of military enterprise architectures through
the seamless sharing of architectures between the partner nations regardless of which
modelling tool or repository they use.

6

Real World Analysis Overview

Background

In the late 20th Century, enterprises grew to unprecedented levels of both size and
complexity. It was recognised (early on by John Zachman) that this was creating a situation
where the enterprise’s architecture needed to be engineered rather than accidental. One of
the challenges was devising engineering tools as none existed. John Zachman developed the
first of these - his Zachman Framework – and the discipline of Enterprise Architecture was
born. Since then a number of other frameworks have been developed and it is now
recognised that a framework is an essential tool for enterprise architecture.

In the last few years, people have started to recognise that in order to develop a common
understanding these frameworks need to be informed by ontology, particularly a top
ontology. John Zachman has been vocal about this and started rethinking his framework in
the light of this requirement. What ontology brings is a way of enabling the framework to
present a clear picture of the enterprise – a real world semantics – where the enterprise
models actually accurately reflect the real enterprise. And this clear picture provides a
common reference point that is a solid basis for a common understanding.

Some years ago, the multi-national IDEAS Group realised the importance of ontology both
for enterprise architecture frameworks in general and also specifically for enterprise
architecture (EA) interoperability (a key requirement for coalition collaboration). They
realised that if the coalition forces used the same top ontology and so shared a real world
semantics, they could greatly simplify the exchange of enterprise architectures thereby
improving collaboration and coordination. Hence, they devised and published a suitable top
ontology – The IDEAS Foundation – to act as a common foundation for each nation’s
architectural framework.

The US has migrated their architectural framework - DODAF – onto the IDEAS Foundation,
producing DM2 (DODAF Metamodel 2). SweAF has taken on the task of starting the
migration of the MODAF Meta-Model to the IDEAS Foundation, with the goals of providing a
stable baseline for MODAF and aligning with what has been done with DM2. This migration
is shown graphically in Figure 2.

7

MODAF (MODEM) MetaModelMODAF (UML) MetaModel

Current M3 Framework Proposed MODEM Framework

UML Superstructure

UML Behaviour

IDEAS

extends

MODAF (UML) MetaModel Extension

extends

MODEM Common Patterns

extends

MODAF (MODEM) MetaModel Extension

Figure 2 - Migrating MODAF to an ontological foundation

Real world semantics

As noted earlier, a key benefit of the migration is the provision of a real world semantics.
From an EA perspective, the boxes and lines in their models need to have a clear connection
to the real world – a real world semantics. If the EA model has boxes with the text ‘cat’ and
‘mat’ and a line joining the boxes with them with the text ‘sat on the’ – then there needs to
be some confidence that people will interpret this as being about a cat sitting on a mat.
There should be no worries that the users might interpret ‘cat’ as a dog or ‘sat on the’ as
slept under – or that different users might interpret the model in different ways. In the case
of simple examples using cats and mats, there is little reason for concern. But once the
enterprise become bigger, there is a need for a semantic framework to bring a level of
rigour.

In UML, as in many other modelling frameworks, the overarching framework was not
designed with these semantic requirements in mind – though the examples often pay lip
service it. The UML structures grew from a programming language base and are strongly
influenced by this and the desire to be able to automatically generate program code from
the models – which are not core requirements for EA. This lead to a focus on formal
structure and a corresponding lack of focus on the real world semantics. Appendices B and C
give a flavour of this. Appendix B contains a formal description of a state machine and
Appendix C contains descriptions of the UML state machine. The result is often a framework
that can hinder rather than help the uncovering of the real world semantics - there are a
number of examples of this in the analysis section.

In modelling situations, such as EA in general and MODAF in particular, it is vital that the real
world semantics are clear. Hence, an important aim of this project is to provide MODAF with
a semantic framework –the IDEAS Foundation.

The introduction of real world semantics to MODAF will help to improve the semantic
quality of the data exchange of enterprise architectures. It will lead to the removal of
implementation constraints and so give a clearer real world semantics – as well as a more
flexible structure. This in turn provides a better picture of the common underlying business
patterns. Which leads to simpler, more accurate, models. Which leads to a better common
understanding.

8

The Approach

Devising structures to support UML’s specific goals created architectural pressures that hid
the underlying real world semantics. A basic task of the analysis was to reconstruct the
hidden real world semantics.

It used the BORO Method and this enabled the:

 harvesting of the relevant features of UML and migrate them to MODEM,

 winnowing out of the irrelevant technical features – particularly the constraints that were

stove piping the UML metamodel,

 provision of a migration path for the existing MODAF models, and

 provision of clearer simpler picture of the enterprise – one which reveals the common

underlying business patterns across what previously appeared as very different areas.

This enables the IDEAS partners to take advantage of the significant historic investment
made in the UML and MODAF metamodels without also having to take on the burden of
irrelevant features and constraints.

MODAF (MODEM) MetaModelMODAF (UML) MetaModel

Current M3 Framework Proposed M3 Framework

UML Superstructure

UML Behaviour

IDEAS

extends

MODAF (UML) MetaModel Extension

extends

MODEM

extends

MODAF (MODEM) MetaModel Extension

Useful patterns

Irrelevant
technical
constraints

Figure 3 - Harvesting and winnowing the patterns

It also provides the vendors with the specification of a migration that would allow existing
MODAF users to migrate to the MODEM Foundation and take advantage of the new
functionality at little or no cost.

Furthermore this ensures that MODEM provides a truly EA tool-agnostic representation of
MODAF. The elimination of the UML-dependency should help to increase the set of EA tool
vendors that base their EA approach on a common metamodel – providing the IDEAS
partners with greater choice.

Use of IDEAS Foundation

The analysis process used the IDEAS Foundation to reconstruct the missing real world
semantics starting from the existing UML metamodel. In order to maximise the benefits of
the IDEAS Foundation, great care was taken to ensure that the whole of the IDEAS

9

Foundation was used without any modification, and that where a pattern existed in the
foundation it was used rather than re-invented at a lower level.

Also a clear distinction between the IDEAS Foundation and the MODEM extension was
maintained. Where important common business patterns were discovered, these were
marked as candidates to be promoted to the foundation in a future version of the
foundation.

Scope of the report

Two aspects of the MODAF metamodel use native UML without any additional MODAF
structure – state machines and interactions. In other words, no new stereotypes are defined
in M3 for these areas. This presents a challenge to the migration project in that the
semantics of those UML aspects must be fully analysed to identify the required functionality
to be met by new IDEAS patterns for interactions and state transitions. Both these aspects
fall within the UML behaviour model1. This report describes the migration of these two
aspects.

This report describes the analysis for the behaviour section of M3 and UML and illustrates
the harvesting, winnowing and simplifying that has taken place. There is significant scope for
this in the behaviour section of the UML metamodel as its constraints lead to a particularly
stovepiped architecture. Here are a couple of examples that highlight these issues.

The scope of UML behaviour can be traced to MODAF views. State Machine diagrams are
used in OV6b and SV10b and Interaction diagrams in OV6c and SV10c, where OV deals with
nodes and SV deals with resources. Appendix A contains an overview of these diagrams.

State Machine and Interaction diagrams can be viewed as complementary. Where one
wants to look at the behaviour of a single object, state machines are used. Where one wants
to look at behaviour across objects, interaction diagrams are used.

Process Detail

The analysis has clarified the main features of the real world semantics for ‘behaviour’ – the
relationships between objects over time. It has mined the UML Behaviour model, stripping
away the particular implementation decisions that UML made to reveal the underlying
structure. The resulting patterns are not only a clearer picture of the real world but they
also show the underlying simple straight-forward structures and so are easier for users to
work with. Taking away the particular implementation constraints has resulted in a
structure that gives a closer fit to EA user requirements and is more flexible than the original
UML patterns.

The BORO analysis worked from the bottom up. It started by developing a clear picture of
the individual objects that the UML structures were describing (the UML structures are
several type layers above the individuals). Once this was established, it worked up the type
layers. There is a detailed record of this analysis in the Worked Examples report. Given how

1
 They are specified in Chapters 14 ‘Interactions’ and 15 ‘State Machines’ in UML Superstructure Specification,

v2.3.

10

key the formal structure is, extensive automated validation was performed on the MODEM
model and examples.

It identified two core behaviour patterns that underlie the two UML diagrams:

 A pattern that deals with an object’s state successions, which is handled by UML
State Machines.

 A pattern that deals with the exchanges between the different objects participating
in an interaction, which is handled by UML Interaction messages.

In UML, these two diagrams are in separate stovepipes with no overlap. The types of
element in one diagram cannot appear in the other. One of the identified requirements was
to break down this stovepipe and allow elements to appear in both diagrams. The analysis
not only did this but also identified that the patterns associated with state machines are at
the heart of the interaction diagram.

UML Interoperability Issues

UML’s lack of a real world semantics (and so the benefits of moving to a MODEM
Foundation) can be illustrated by the kind of semantic interoperability issues that are
endemic within UML where different nations may take different views of the same domain.

UML State Machines and Interaction diagrams tend to assume that there is only a single
view of the enterprise and so do not allow any other alternate views. However, in coalitions
with multiple partners there are likely to be multiple views. The following examples
illustrate the issue.

This example is shown graphically in Figure 4. In UML one can choose which states to
include in a state machine. If Nation 1 chooses to include three states in a state machine and
Nation 2 chooses to only include two of these states, then it is impossible in UML to
combine the two models. There is no real world semantics reason why one should not be
able to do this, so it is possible within MODEM.

Coalition (Combined) View

Nation 2Nation 1

State Machine C

1 2

UML

MODEM

3

State Machine D

1 2

State Machine C

State Machine D

1 2 3

Figure 4 - Interoperability issues - partial views

This example is shown graphically in Figure 5. In UML one cannot inherit either states or
state machines. But if Nation 1 chooses to include three states in a state machine and
Nation 2 chooses model sub-states of two of these, this cannot be described directly in

11

UML. There is no real world semantics reason why one should not be able to do this, so it is
possible within MODEM.

Coalition (Combined) View

Nation 2Nation 1

State Machine C

1 2

UML

MODEM

3

State Machine D

4 5

State Machine C

State Machine D

1 2 3

4 5

Figure 5 - Interoperability issues - inheritance

This example is shown graphically in Figure 6. In UML one can describe exactly the same
orthogonal regions in a single state machine or multiple state machines. If Nation 1
describes the two regions in two state machines and Nation 2 describes them in one state
machine, then it is impossible in UML to combine the two models. There is no real world
semantics reason why one should not be able to do this, so it is possible within MODEM.

Coalition (Combined) View

State Machine C

State Machine A

1 2

State Machine B

3 4

Nation 2

State Machine C

1 2

3 4

Nation 1

State Machine A

1 2

State Machine B

3 4

UML

MODEM

Figure 6 - Interoperability issue example - regions

While UML’s constraints might make sense in a programming situation, they hinder
interoperability between different nations’ models.

12

State Type Succession pattern – real world analysis

This section focuses on the real world semantics for state machines.

UML State Machines - Examples
We use a number of examples to help guide the analysis and illustrate the results. The UML
specification contains a number of examples. Figure 7 shows the one used as a basis for the
analysis.

Figure 7 – “Figure 15.12 - Protocol state machine” (p. 552 - UML Superstructure Specification, v2.3)

The Figure 7 example is extended in Figure 8 to show multiple (concurrent) ‘orthogonal
regions’ and ‘hierarchically nested states’. ‘Door Open-Closed-Locked’ and ‘Door Alarmed’
are both ‘orthogonal regions’ of the Door State Machine. ‘Alarm Level One’ and Alarm Level
Two’ are sub-states of ‘Door Alarmed’ (in its submachine).

Figure 8 - Extended Example

Real World Semantics for a ‘State Successions’ pattern

The starting point for the analysis is the ‘state succession pattern’. The first task in
unbundling this is to establish from a real world semantics perspective, what a state is, what
it is that has a succession.

 stm Door State Machine

Door State Machine

[Door Open-Closed-Locked]

[Door Alarmed]

Door Closed

Door Locked

Initial

Door Open

Door Alarmed

Alarm Lev el One Alarm Lev el Two

close door

[doorway->isEmpty()]door

creation

unlock

door

lock

door

open door

alarm on - off

13

A real world state
From the IDEAS perspective, this is well-established. A state of X is a temporal slice of X. For
example, a door is opened and then closed. While it is open, the door is in a ‘door open’
state – this is a temporal slice of the whole four-dimensional extent of the door – as shown
diagrammatically below.

sp
ac

e

time

Door

No 73

Door Open State

#01

Figure 9 - A door open state space-time map

This slicing works much in the same way one would take a slice out of the middle of a long
sausage. The object is sliced at its start boundary and end boundary – and everything in
between is in the temporal slice. The limiting case is where one takes a slice off the
beginning or the end – then only one real slice is needed, the other being notional.

Not every temporal part is a temporal slice. A simple example would be the fusion of two
separates temporal slices. For example, as shown in Figure 10, a fusion of a door open and a
door locked temporal slice is not itself a temporal slice. There are two indicators of this;
firstly, one cannot mark out the state with a slice at the start and another at the end
boundary – it needs four slices. Secondly, there is a temporal slice in its middle (marked in
the diagram) that is not part of it but is part of the door. When we look at the succession
pattern, it will become clear why this can cause a problem.

Figure 10 - Example of a non-slice temporal part

The example in Figure 10 might lead one to think that the state (temporal slice) must be
connected; in other words one can draw a line from any one part to any other part without
leaving the state. But it turns out that this requirement is too strong, as there can be
perfectly valid scattered temporal slices, so long as it inherits its scattering from the thing it
is a slice of.

To see this, consider the following example:

Manchester United and Wimbledon play a football match in two halves, with a short
interval. It seems reasonable to assume that the interval is not part of the match. Then the
football match is scattered, as it has two temporally disconnected halves. (The halves are
not connected as one cannot draw a line though space and time from one half to the other

sp
ac

e

time

Door Open State

#01

Door Locked State

#03

Fusion of Open and Locked Door States

A

Temporal

Slice

14

without leaving the extension of the football match – just as one cannot draw such a line on
the space-time map in Figure 11.)

Assume that Manchester United played well for part of the match; that they started playing
well after about 10 minutes from the start and stopped playing well about 15 minutes
before the end. This gives us a ‘Manchester United playing well’ state of a football match,
shown in Figure 11. It is a temporal slice of the football match, with a clear start and end
slice but it, like the football match, is scattered – that is, it is not connected. However,
because the slice inherits the scattering from the football match, it does not introduce a gap
in the slice relative to the whole being sliced. So states can be scattered, so long as they
inherit the scattering from the whole of which they are a state.

Figure 11 - A scattered state of a scattered football match

A real world state succession
However, central to the operations of a UML State Machine are the transitions between a
set of (UML) states. From a state perspective, this is what we call a state succession.
Consider a case where a door is opened, closed and then locked. There is a clear succession
(transition) from a door open to a door closed and then to a door locked state – as shown
below as a space-time map.

sp
ac

e

time

Door Open State

#01

Door Closed State

#02

Door Locked State

#03

Figure 12 - Open-Closed-Locked Space-Time Map

One can see in the space-time map that the states form a chain or line with an initial state
followed by a number of state successions (or transitions) and then a final state. (Arrows in
the space-time map mark the initial and final states in the space-time map.)

The states do not have to immediately succeed one into the other, as in Figure 12. If we
consider just the open and locked states, we get a succession that happens after a period of
time – see Figure 13. This is valid and it is often useful to have different views.

sp
ac

e

time

Manchester United

playing well

Football

Match #4

first half second half

15

sp
ac

e

time

Door Open State

#01

Door Locked State

#03

Figure 13 - Open-Locked Space-Time Map

Non-causal successions
As these examples show, the succession relation is not causal. The first half of a football
match does not cause the second half. Nevertheless there is a dependency between the
successions, it is logically impossible for there to be a second half of a football match
without there being a first half – it is necessary that there is a first half before there can be a
second half.

Set of Successions Relative to Set of States

The last two examples also illustrate the requirement (constraint) that the relevant
successions are determined by the collections of states under consideration. So in Figure 13,
which excludes the Door Closed State, the succession from Door Open #01 to Door Locked
#03 is included. But in Figure 12, which includes the Door Closed State it is not. This shows
how being a succession is relative to a set of states. Within that set of states, the succession
picks out the next state in the collection – and which state is next depends upon which
states are in the collection. This requirement excludes the succession from Door Open #01
to Door Locked #03 (shown in Figure 13) as it does not pick out the next state in the
collection – even though both states at the ends of the succession are in the collection. Also,
a succession can be associated with more than one set of states – the succession from Door
Open #01 to Door Closed #02 is a succession in Figure 13 and Figure 14.

sp
ac

e

time

Door Open State

#01

Door Closed State

#02

Figure 14 - Open-Closed Space-Time Map

This also shows that states and succession can be in many state succession views –
something UML does not cater for.

Disjoint Set of States Requirement

Furthermore, not just any collection of states will have this pattern – the collection of states
must be disjoint – in others words, they must not overlap. Otherwise, the successions will
not ‘work’ because the end of one state is before the beginning of the next state.

For example, a door can be both open and alarmed – in other words, the ‘door open state’
and the ‘door alarmed state’ can overlap as shown in the space-time map in Figure 15. The

16

door alarmed state cannot succeed the door open state – as it has started before the door
open state has ended. Hence the collection {Door Open State #01, Door Alarmed State #11}
is not an example of the state succession pattern.

sp
ac

e

time

Door Open State

#01

Door Alarmed State

#11

Figure 15 - Overlapping states

One can begin to see the reason why scattered temporal parts cannot be states (scattered
relative to the things they are states of). If you look at the example in Figure 10 again, then
the fusion of the door open with the door locked temporal slice, and the other temporal
slice, are disjoint – but there is no way one can succeed the other, as they interleave each
other. So both a non-relatively scattered state and disjointness are required to enable
succession.

Real World Semantics for a ‘State Type Successions’ pattern

We have grounded this state succession pattern at the individual level for an individual
door; we now need to take it up a level for doors in general. In the next stage we consider
the state successions pattern in general, not just for doors. For this first step, we generalise
to door state types rather than individual door states.

Consider doors in general and their open, closed and locked states. We can describe a
pattern of successions between these states in a grid – shown in Figure 16.

OPEN DOOR CLOSE DOOR LOCKED DOOR

OPEN DOOR

CLOSE DOOR

LOCKED DOOR

NEXT STATEPREVIOUS
STATE

initial

OPEN-CLOSED-LOCKED DOOR STATES SUCCESSION GRID

final

Figure 16 - Example succession grid

The new feature at this level is the state types – we have divided the individual states into
types. And we have three types of states of this thing (doors), whose instances are temporal
stages of doors. However, for the successions to ‘work’, there are some additional
constraints that need to be satisfied.

Instance-wise Disjoint Union of Set of States Requirement

At the grounding level, we have the constraint that the states of the whole must be disjoint.
This translates into a requirement that the union of the three state sub-types (so the union

17

of open, closed and locked states) are disjoint relative to their whole. It turns out that a
requirement that state sub-types are just altogether disjoint is too strong.

To see this consider this example. We have a prison door and it has a cell viewing door built
into it (see Figure 17 below). Clearly the cell viewing door is an integral part of the prison
door and both doors can be open and closed independently.

Prison Door

Cell Viewing Door

Figure 17 - An example of a door within a door

It is likely that the viewing door will be open when the prison door itself is open, closed or
locked. This is shown diagrammatically Figure 18 for the case where the door is open and
then closed. This means from a spatio-temporal perspective that the collection of all the
door open-closed-locked states (their spatio-temporal extents) overlap, that they are not
disjoint.

Door Open State

#01

Door Closed State

#02

Prison

Door

Cell

Viewing

Door

Door Open State

#33

time

sp
ac

e

Figure 18 – (Non-Instance-wise) Door Overlapping States

If we made it a requirement that the states were disjoint, we would exclude cases where
there is a clear state succession pattern. Instead, we work with the weaker requirement that
for each door instance all its states in the collection must be disjoint. This requirement must
be met to enable the successions to work. So, in this example, when we consider the prison
door (as the ‘owner’ of the collection of its temporal stages), the cell viewing door states are
not considered as they are not states of the prison door. So cases such as the prison door
state succession patterns are included.

18

This kind of constraint can be difficult to spot as there is a natural assumption that all
instances of everyday types (such as doors) are disjoint. However, a little reflection can soon
provide one with many counter-examples.

Disjoint Set of State Types

We need to add one further constraint. Consider a case where we have chosen the two
state types: Open Door and Unlocked Door (where this is the union of the Open Door and
Closed Door states). This does not violate the ‘instance-wise disjoint union of set of states’
requirement described above as at the individual level, the union of the state sub-types are
instance-wise disjoint. However, it does not exhibit the state succession pattern – it does
not make sense to talk of an Open Door state transitioning into an Unlocked Door state as it
is already in an Unlocked State. The underlying reason is that at the state type level, the
state types are not disjoint, they share members – as shown in Figure 19.

sp
ac

e

time

Door Open State

#01

Door Closed State

#02

Door Unlocked

StatesDoor Open

States

Figure 19 – Non-instance-wise Disjoint Types Space-Time Map

This is easy to see in the Venn diagram format in Figure 20.

Door Open State
#01

Door Closed State
#02

Door Open

States

Door Unlocked States

Figure 20 - Non-instance-wise Disjoint Types Venn Diagram

This shows the need for an additional constraint; that the state types chosen must be
disjoint – they must have no members in common. It also clearly illustrates that the
constraint is a property of the collection of states, rather than the individual states.

Real World Semantics for the general ‘DisjointStateTypesSets’ pattern

The door’s ‘state type succession’ pattern is one example of the general
‘DisjointStateTypesSets’ pattern. In general, something is a ‘DisjointStateTypesSets’ if:

1. It contains a disjoint set of types

2. The union of these types are all temporal stages of some sub-type of ‘Individual’ (an
Individual sub-type) and

3. These temporal stages are instance-wise disjoint relative to the sub-type.

19

Individual sub-type’s hierarchy of ‘DisjointStateTypesSets’
There is no constraint on how many ‘DisjointStateTypesSets’ an Individual sub-type can
have, provided they meet the criteria for ‘DisjointStateTypesSets’. An Individual sub-type
will typically have a hierarchy of ‘DisjointStateTypesSets’. We can use the door example to
illustrate this. The example contains the set {Door Open, Door Closed, Door Locked}.
Consider the sub-sets of this:

 {Door Open, Door Closed},

 {Door Open, Door Locked},

 {Door Closed, Door Locked},

 {Door Open},

 {Door Closed}, and

 {Door Locked}.

Each of these is a ‘DisjointStateTypesSets’ in its own right – these are shown in the Venn
diagram in Figure 21. From a pragmatic perspective, there may be situations where it is
useful to filter out the states an audience is not interested in. This provides the structure to
select for each audience the view that contains what they are interested in.

Taxonomic HierarchyVenn diagram

Door Open or Closed or Locked

Door Closed or LockedDoor Closed or Locked

Door Open

Door Closed

Door Locked

Door Open or ClosedDoor Open or Closed

Door Open or LockedDoor Open or Locked

Door Open or Closed or Locked

Door Closed or LockedDoor Closed or Locked

Door Open Door Closed Door Locked

Door Open or ClosedDoor Open or Closed Door Open or LockedDoor Open or Locked

Figure 21 – Example hierarchy of ‘DisjointStateTypesSets’

Multiple ‘orthogonal ‘DisjointStateTypesSets’ pattern
In the example above, the hierarchy of ‘DisjointStateTypesSets’ shared members. It is
common to include multiple orthogonal sets – orthogonal2 in the sense that they do not
share members (though they may share instances of their members). As noted earlier, the
selected worked example (see Figure 8) contains an instance of multiple ‘orthogonal’ sets:
AlarmedDoorStateTypeSet and OpenCloseLockDoorStateTypeSet.

2
 ‘Orthogonal’ is defined on p. 563 of the UML Specification in relation to regions as ‘Description. A region is an

orthogonal part of either a composite state or a state machine. It contains states and transitions.’ Though

some formal structure is defined elsewhere, there is no further description of the real world semantics for this.

20

As this case illustrates, the union of the two sets may not be a ‘DisjointStateTypesSets’ -
Figure 15 shows a Door Open state can overlap a Door Alarmed state. Hence, the behaviour
of an individual can be characterised by a number of different state machines. Picking on set
of state types does not exclude the overlapping states from being participants in another
state succession pattern.

Nested ‘DisjointStateTypesSets’ pattern
Given that any individual sub-type can have ‘DisjointStateTypesSets’, it follows that the state
types in one set can be the owner of its own ‘DisjointStateTypesSets’. This is a common
behavioural pattern. The worked example provides an instance of this. The
AlarmedDoorStateTypeSet owns the Alarmed Door Level One - Level Two State Type Set as
shown in state machine diagram format in Figure 8.

The multiple orthogonal ‘DisjointStateTypesSets’ and nested ‘DisjointStateTypesSets’
patterns are examples of structures that are inherited from UML to MODEM.

Inheriting the ‘State Successions’ pattern
As noted at the beginning of this section, different nations may decide to model their state
machines at different levels of generalisation. When combined these lead to a requirement
for inheritance of the state successions pattern. The requirement can exists with a MODAF
model, where the state type succession in an OV6b is sometimes specialised in a SV10b,
adding or removing structure. The analysis clarified that this specialisation is a super-sub-
type relation between the state types – and shows how additional structure can be added.
This is illustrated with this simple extension to the earlier door example.

Consider ‘Fridge Doors’, a sub-type of ‘Doors’ – and assume, as is often the case, that they
cannot be locked – in other words, there is no Fridge Door Locked state. Clearly Fridge
Doors and the set {Fridge Door Open, Fridge Door Closed} are just a specialisation (in some
sense) of the earlier example and exhibit the state type succession pattern – as shown in
Figure 22. This is an example of the inheritance pattern in Figure 5.

Taxonomic HierarchyVenn diagram

Door Open or Closed or Locked

Door Open Door Closed Door Locked

Fridge Door Open or ClosedFridge Door Open or Closed

Fridge
Door Open

Fridge
Door Open

Fridge
Door Closed

Fridge
Door Closed

Door Open or Closed or Locked

Fridge Door
Open or Closed

Fridge Door
Open or Closed

Door Open Door Closed Door Locked

Fridge Door OpenFridge Door Open Fridge Door ClosedFridge Door Closed

Figure 22 – Example inherited states

Interaction Diagrams – real world analysis

This section focuses on the real world semantics for interaction diagrams.

21

Chosen Example

The chosen interaction diagram example (Figure 23) looks at the role of people in an ‘Eat
Restaurant Meal’ interaction. This Interaction diagram takes a particular view of the
interaction through its choice of participants. One could easily take other views of this
interaction by choosing different participants. For example, one could have a cutlery and
crockery view or a food and wine view or a money view of this example interaction.

Bob/Waiter
takes food

and wine
 order

order food

Fred/
Patron
served

wine

Hank/
Cook
cooks
food

serve wine

Bob/
Waiter
serves
wine

order food and wine

Fred/
Patron
orders

food

Fred/
Patron

eats
meal

pickup

serve food

Renee/
Cashier
takes
payment

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

Bob/
Waiter
serves
food

Figure 23 - Chosen Interaction Diagram Example

Two Key Aspects

There are two key aspects of an interaction diagram. Firstly, the interaction has as
components a number of participations by other Individuals (called in MODEM ‘Interaction
Roles’ and in UML ‘lifelines’). Secondly, there are temporal ordering inter-dependencies
between components of the interaction. These aspects can be seen in the chosen example.

The participation aspect

Figure 24 is a space-time map that shows the first aspect – the whole-part relationship
between the individual interaction role participations and the overall interaction - for
example, the ‘Fred: Patron’ interaction role is the participation by Fred in ‘Fred Eat
Restaurant Meal’.

22

sp
ac

e

time

Renee

Fred : Patron

Hank

Bob

Fred

Bob : Waiter

Hank : Cook

Renee : Cashier

Fred
Eat Restaurant

Meal

Figure 24 - Component participation space-time map

Figure 25 abstracts the same structure from the interaction diagram – though this is at a
higher type level – working at the level of Patron (IndividualType) rather than Fred
(Individual).

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

Figure 25 - UML Notation for lifeline participations

The temporal ordering aspect

The second aspect can be seen in Figure 26, which abstracts the temporal orderings from
the Interaction diagram. This produces a directed graph in which the interaction
components are nodes and dependencies are arrows. As the figure shows there is a close
inter-connection between the two aspects; the component nodes are not just components
of the interaction, but also components of the participations. This also provides the basis for
partitioning the temporal ordering relations into those within and those between the
interaction role participations – shown in different colours in the figure.

23

Person

order food

serve wine

order food and wine

pickup

serve food

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

Figure 26 - Interaction component dependencies

UML makes the same distinction. The dependencies across the interaction roles (lifelines) as
‘Messages’, whereas the dependencies within the roles (lifelines) are based upon a
‘GeneralOrderings’.

Non-circularity constraint

An essential feature of temporal orderings is that they are not circular. One cannot follow a
string of temporal orderings and return to where one started.

Figure 27 illustrates a circular ordering within an interaction diagram. If one starts at ‘1’ then
follows the orderings ‘2’, ‘3’ and ‘4’ one then returns to ‘1’. A telltale clue here is that the
lines in the diagram cross.

X Y

1

2 4

3

X Y

`

Figure 27 - Circular temporal dependencies

24

Temporal Ordering within an Interaction Role

The ordering within the roles (lifelines) arises from patterns within the lifelines that are not
shown in Figure 26. Figure 28 shows the finer detail. In UML, each lifeline (Interaction Role)
has two-levels of components, with interaction dependency components at the second
level.

Bob/Waiter
takes food

and wine
 order

Fred/
Patron
served

wine

Hank/
Cook
cooks
food

Bob/
Waiter
serves
wine

Fred/
Patron
orders

food

Fred/
Patron

eats
meal

Renee/
Cashier
takes
payment

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

Bob/
Waiter
serves
food

Figure 28 - Interaction Roles and their components

These components exhibit the same state succession pattern that underlies state machines.
The components at the first level (‘ExecutionSpecifications’ in UML-speak) divide the lifeline
into sets of disjoint state types. For example, Figure 29 shows the Waiter role/lifeline’s three
components as disjoint successions – firstly as an abstraction from an interaction diagram
and then as a space-time map.

Bob/Waiter
takes food

and wine
 order

Bob/
Waiter
serves
wine

Person

(Bob:)
Waiter: Person

Bob/
Waiter
serves
food

sp
ac

e

time

Bob/Waiter takes

food and wine

 order

Bob/Waiter serves

wine

Bob/Waiter serves

food

Figure 29 - Lifeline components as disjoint state types

25

This, in effect, means the lifelife in a UML Interaction diagram is a State Machine. This point
can be made explicit notationally by using the UML State Machine notation to represent the
lifeline – this alternative notation is shown in Figure 30.

Fred/
Patron
served

wine

Fred/
Patron
orders

food

Fred/
Patron

eats
meal

Person

(Fred:)
Patron: Person

Person

(Fred:)
Patron: Person

Interaction
diagram
notation

Patron
State Machine

Fred/
Patron
orders
food

Fred/
Patron
served
wine

Fred/
Patron

eats
meal

Interaction AND
State Machine Diagram

notation

Figure 30 - Combined Interaction and State Machine UML Notation

However, not any state succession is allowed in an Interaction. In the general pattern, there
can be orthogonal regions – but not in an interaction diagram. Furthermore, in the general
pattern a state type can be succeeded by more than one other type. For instance, in the
door example, the door closed could be succeeded by either a door open state or a door
locked state. In the interaction diagrams state succession, one state type is always followed
by another state type – there is no variety. This leads to a linear chain of state types – and so
a linear chain of states in the instances.

Temporal Ordering across Interaction Roles

In UML, ExecutionSpecifications can contain a second level of events,
OccurrenceSpecifications. Where these are MessageOccurrenceSpecifications, they are the
send or receive end of a message. Figure 31 provides an example; the yellow
MessageOccurrenceSpecification is a send message end and the red
MessageOccurrenceSpecification is a receive message end.

26

Fred/
Patron
served

wine

serve wine

Bob/
Waiter
serves
wine

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

Figure 31 - An Example 'Message'

From a real world semantic perspective, these are a different kind of ordering from the state
successions within the interaction role. Earlier we noted that state successions are not
causal; the first half of the football match does not cause the second half. Similarly, the
waiter serving the wine does not cause the waiter to serve the food. However, the temporal
ordering of the send and receive messages is causal. The sending – the waiter serving the
wine – causes the receiving – the patron served the wine. In the MODEM model these are
called state interactions.

Strong and weak temporal orderings

This semantic difference between state interactions and successions leads to a structural
difference. If one looks closely at the example, one can see that the waiter serving the wine
must start before the patron receiving the wine – a cause cannot start before its effect.
However, in this and other cases, it is likely that the patron starts receiving the wine before
the waiter has finished serving it. Similarly, the waiter serving the wine must finish before
the patron receiving the wine finishes. This is shown graphically in Figure 32.

Patron

sp
ac

e

time

Waiter Waiter serves wine

Patron receives wine

Figure 32 - start-end temporal ordering

This kind of temporal ordering is weaker than the strong total temporal ordering of state
successions. As noted earlier, one state must end before the next state can start.

Unnecessary UML Layering

The UML Specification makes a clear and absolute distinction between the two layers in an
interaction role (lifeline). The lifeline is divided into ExecutionSpecifications and these are
divided into OccurenceSpecifications. The state interaction orderings hang off the

27

OccurenceSpecifications. This levelling is superfluous structure. There is no reason why any
leaf state should not be a send/receive node. This can be seen clearly in the example. In
Figure 33, the two cases (highlighted) where an ExecutionSpecification contains a single
Message OccurenceSpecification, the OccurenceSpecification has been removed and the
send/receive link transferred to the ExecutionSpecification.

Figure 33 - Removing unnecessary levelling

This makes things clearer. It conveys the same information, and does this with fewer
objects. It is also a more faithful representation of what happens. From real world semantics
perspective, there seems to be no appreciable difference between the
ExecutionSpecification and OccurenceSpecification. They seem to have been introduced
merely to fit in with the UML rules. There is no reason to import this constraint into
MODEM.

Taking advantage of the embedded state machine pattern

As noted earlier, the analysis shows that the UML Interaction diagram uses a version of the
state succession pattern – though this connection is not recognised in any way in the UML
specification, where State Machines and Interaction diagrams are treated separately –
effectively stove piping them. The version used is quite restricted. This raises the question of
why these restrictions are in place and whether they are real.

One of the restrictions is that the interaction lifeline state machines do not cater for
orthogonal regions. We can illustrate what one might look like using the chosen example –
shown again in Figure 34.

Bob/Waiter
takes food

and wine
 order

order food

Fred/
Patron
served

wine

Hank/
Cook
cooks
food

serve wine

Bob/
Waiter
serves
wine

order food and wine

Fred/
Patron
orders

food

Fred/
Patron

eats
meal

pickup

serve food

Renee/
Cashier
takes
payment

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

Bob/
Waiter
serves
food

28

Figure 34 - UML restricted ordering

Let’s relax the dependency between the waiter passing the food order to the cook and the
waiter serving the wine by introducing a waiter handles food and wine order process which
has the waiter passing the food order to the cook and the waiter serving the wine as states
in separate regions. The result is shown in Figure 35.

Bob/Waiter
handles

food and
wine

 order

order food

Fred/
Patron
served

wine

Hank/
Cook
cooks
food

serve wine

Bob/
Waiter
serves
wine

order food and wine

Fred/
Patron
orders

food

Fred/
Patron

eats
meal

pickup

serve food

Renee/
Cashier
takes
payment

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

Bob/
Waiter
serves
food

Bob/
Waiter
hands over
food order

Figure 35 - Interaction diagram with multiple regions

Figure 36 shows the temporal ordering abstracted from the interaction example, with the
changes marked in red.

Bob/Waiter
takes food

and wine
 order

order food

Fred/
Patron
served

wine

Hank/
Cook
cooks
food

serve wine

Bob/
Waiter
serves
wine

order food and wine

Fred/
Patron
orders

food

Fred/
Patron

eats
meal

pickup

serve food

Renee/
Cashier
takes
payment

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

Bob/
Waiter
serves
food

Person

order food

serve wine

order food and wine

pickup

serve food

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

29

order food

serve wine

order food and wine

pickup

serve food

Person

(Fred:)
Patron: Person

(Bob:)
Waiter: Person

(Hank:)
Cook: Person

(Renee:)
Cashier:Person

pay

Figure 36 - Multiple region temporal ordering

What this illustrates is that recognising the underlying state succession pattern in the
interaction diagram enables new functionality to be added at no extra cost.

Summary

The analysis has identified the real world semantics behind the UML structures creating the
basis for a common understanding. The UML structure is divided into rigid siloes. The real
world analysis has shown that these silos are not a reflection of the underlying enterprise.
These constraints in original structure need not be migrated to MODEM – making it more
flexible. The real world semantics makes the underlying business patterns clearer – and so
makes the identification of common patterns simpler. A salient example of this is the
appearance of the state machine’s state succession pattern at the centre of the Interactions.
The use of these common patterns makes the model simpler and easier to understand.

30

IDEAS Detailed Technical Analysis

Introduction

This is the third section of the report, which presents the detailed analysis. This translates
the points raised in the second section into IDEAS diagrams. Some of these diagrams contain
a large amount of information. They are included in the report but may be better viewed in
the Worked Examples HTML report.

This section is divided into two parts, one dealing with the state succession pattern, the
other dealing with the interaction pattern.

State Type Succession pattern –real world analysis

The analysis starts by giving some context by looking at what UML State Machines are.

UML State Machines

UML State Machines are based upon Harel StateCharts with some additions. The original
Harel State Machine focused on the formal structure and relied on an implicit, intuitive real
world semantics. The UML State Machines developed the formal structure to meet
additional requirements, such as hierarchical state machines and orthogonal regions. Their
focus seems to have been more on providing an executable formal structure than
developing the real world semantics. One result of this is that the current formal structure
of the UML specification for state machines does not map easily onto a real world
semantics.

However, careful analysis using the (BORO-based) IDEAS Foundation has recovered the
underlying intentions and reconstructed a formal structure with a clear real world
semantics.

UML State Machines specification
The UML Superstructure specification contains the specification of state machines (and
associated apparatus: regions, transitions and states). A StateMachine contains Regions,
which in turn contain Transitions, which in turn link States, which are a sub-type of Vertices
(see Figure 37).

31

Figure 37 – “Figure 15.2 - State Machines” (UML Superstructure Specification, v2.3)

The specification’s diagram is a bit too busy for easy reading, so Figure 38 abstracts this
down to the key elements – and adds two missing key elements: StateMachine’s super-type
Behaviour and its association with BehaviouredClassifier.

32

Figure 38 - UML State Machines

The analysis below shows that in some cases this structure obscures the real world
semantics, so reconstruction is required to reveal the real world semantics.

Clarifying terminology
While the types of objects used in UML State Machines are similar to the types that are
identified in our analysis, they are different in significant ways. This raises the question of
what terms to use for the objects found for our analysis. The benefit in using the same term
is that its meaning is already known. The problem is that this known meaning will only
roughly correspond to the meaning of the object in the analysis, and so potentially mislead.
The benefit of using a new term is that it clearly marks that a different sense is intended, but
at the cost of not inheriting an already known sense. These costs and benefits have been
traded off to arrive at what we hope is a pragmatic decision on the use of terms. So, it
seems sensible to use the term ‘state’ as this is the everyday language term, but in the
analysis we use it in the everyday sense (UML uses it for what roughly corresponds to our
types of states). However, in other cases, we have used different terms – for example, we
use succession for what roughly corresponds to instances of UML transitions. There is a
detailed mapping of the terms at the end of the analysis.

The chosen example in IDEAS
The chosen example was a case where a door is opened, closed and then locked – as shown
in the earlier state machine in Figure 8 and the space-time map in Figure 12. There is a clear
succession (transition) from a door open to a door closed and then to a door locked state.

 class 15.3.12 StateMachine

StateMachine

Region

Behavior

Transition

BehavioredClassifier

Vertex

State

+target

1

+incoming

0..*

+state 0..1

+region 0..*

+stateMachine 0..1

+region 1..*

+submachine

0..1

+submachineState

0..*

+source

1

+outgoing

0..*

+transition

0..*

+container

1

+subvertex

0..*

+container

0..1

+context

0..1

33

This is captured in the following two IDEAS diagrams. Figure 39 shows in IDEAS format the
states as temporal parts of ‘No 73’s Door’. Figure 40 shows the successions.

Figure 39 - States as temporal parts of No 73’s Door

Figure 40 – No 73’s Door successions

One can see both in the earlier space-time map and the IDEAS succession diagram that the
states form a chain or line with an initial state followed by a number of state successions (or
transitions) and then a final state.

IDEAS ‘State Type Successions’ pattern

This shows the state succession pattern grounded at the individual level for an individual
door. We then take it up a level for doors in general. In the earlier analysis, we showed the
pattern in the grid in Figure 16 – and reproduced in Figure 41.

 class 10 - No73's Door Open-Close-Lock States

«IDEAS:Indi...

Doors

«IDEAS:Indi...

No73'sDoor

«IDEAS:TupleType»

doorTemporalOpenCloseLockStates
«IDEAS:IndividualType»

DoorOpenCloseLockedStates

«IDEAS:Indi...

{No73'sDoor}

«IDEAS:Individu...

No73InitialOpenState

«IDEAS:Individu...

No73FirstClosedState

«IDEAS:Indi...

No73LockedState

«IDEAS:TupleType»

no73'sDoorOpenCloseLockStatePartitionOfTemporalStageOfs

«IDEAS:IndividualType»

No73'sDoorOpenCloseLockStates

«IDEAS:Type»

DoorInstancesDisjointOpenCloseLockStateTypes

t0311

«IDEAS:Type»

SetOfDisjointIndiv iduals

t0314

t0313

«IDEAS:typeInstance»

doors

«place1Type»

openCloseLockStates

«place2Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance» «IDEAS:typeInstance»«IDEAS:typeInstance»

«place1Type»

«IDEAS:superSubtype»

«place2Type»

«IDEAS:typeInstance»

«tuplePlace1»

1

«tuplePlace2»1

«tuplePlace1»

1

«IDEAS:superSubtype»

«tuplePlace2»

«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace2»

«tuplePlace1»

«tuplePlace2»

«IDEAS:typeInstance»

«tuplePlace1»

«tuplePlace2»1

 class 22 - Open, Close, Lock

«IDEAS:Indi...

DoorOpen

«IDEAS:Indi...

DoorClosed
«IDEAS:Indi...

DoorLocked

«IDEAS:TupleType»

openToCloseStateSuccessions

«IDEAS:TupleType»

closeToLockedStateSuccessions

«IDEAS:Individu...

No73InitialOpenState

«IDEAS:Individu...

No73FirstClosedState

«IDEAS:Indi...

No73LockedState
t039t038

«IDEAS:typeInstance»«IDEAS:typeInstance»

previous

«place1Type»

next

«place2Type»
0..1

next

«place2Type»1

«IDEAS:typeInstance»
«IDEAS:typeInstance»

«tuplePlace2»«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace1» «tuplePlace2»

0..1

previous

«place1Type»1

34

This grid tells us which types of succession are possible and which aren’t. For example, if the
door is open, it can only be closed, it cannot be locked – a Door Open, if it is succeeded,
must always be succeeded by a Door Closed state, it cannot be succeeded by a Door Locked
state. One can easily see this in the matrix, as the the Previous State – Open Door row
(circled), the Locked Door column is greyed out, showing this not a feasible type of
succession.

OPEN DOOR CLOSE DOOR LOCKED DOOR

OPEN DOOR

CLOSE DOOR

LOCKED DOOR

NEXT STATEPREVIOUS
STATE

initial

OPEN-CLOSED-LOCKED DOOR STATES SUCCESSION GRID

final

Figure 41 - Open-Closed-Locked Door States Succession Grid

We represent this grid pattern of successions between the states in the IDEAS diagram in
Figure 42. Here the rows and columns of the grid translate into relations between the
partitions of the state types giving a different perspective of the same structure.

Figure 42 - State successions

Structurally, we have (in IDEAS terms) an Individual Type – a thing (doors) whose instances
are individuals with spatio-temporal extent. This thing (doors) has three types of states,
whose instances are temporal stages of doors. This is shown in the IDEAS diagram in Figure
43, and in more detail in the worked example.

 class 20 - door open-close-lock state type successions

«IDEAS:Indi...

DoorOpen

«IDEAS:Indi...

DoorClosed

«IDEAS:Indi...

DoorLocked

«IDEAS:TupleType»

closeToOpenStateSuccessions

«IDEAS:TupleType»

openToCloseStateSuccessions

«IDEAS:TupleType»

closeToLockedStateSuccessions

«IDEAS:TupleType»

lockedToCloseStateSuccessions

«IDEAS:Type»

doorOpenCloseLockStateTypeSuccessions

«IDEAS:typeInstance»

0..1

previous

«place1Type» 10..1

next

«place2Type»1

«IDEAS:typeInstance»

0..1

previous

«place1Type»1

0..1

next

«place2Type» 1

«IDEAS:typeInstance»

next

«place2Type»

previous

«place1Type»

«IDEAS:typeInstance»

0..1

next

«place2Type»1

previous

«place1Type»

35

Figure 43 - Example IDEAS State Types Set diagram

IDEAS ‘DisjointStateTypesSets’

Earlier we noted that something is a ‘DisjointStateTypesSets’ if:

1. It contains a disjoint set of types

2. The union of these types are all temporal stages of some sub-type of ‘Individual’ and

3. These temporal stages are instance-wise disjoint relative to the sub-type.

In practice, when creating an IDEAS diagram one creates the instance of
‘DisjointStateTypesSets’ with its state types and an instance of ‘IndividualTypeSingleton’
that contains the singleton of the ‘owning’ sub-type of ‘Individual’ and an instance of
‘instanceWiseDisjointStateTypeSets’ linking the two. This is shown in Figure 44 for the doors
example.

 class 10 - Open-Close-Lock Door State Types

«IDEAS:Indi...

DoorsAndStages

«IDEAS:Indi...

DoorOpen

«IDEAS:Indi...

DoorClosed

«IDEAS:Indi...

DoorLocked

«IDEAS:Type»

OpenCloseLockDoorStateTypeSet

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:IndividualType»

DoorOpenCloseLockedStates

«IDEAS:TupleType»

unionOfOpenCloseLockDoorStateTypeSet

«IDEAS:Type»

{DoorOpenCloseLockStates}

«IDEAS:Pow...

Indiv idualType

«IDEAS:Indi...

Indiv idual

«tuplePlace2» 1

«IDEAS:superSubtype»
«IDEAS:typeInstance»

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»

«IDEAS:superSubtype»

1..*

superType

«place1Type»1 1

subType

«place2Type» 1

«IDEAS:superSubtype»

«tuplePlace1»

1

«IDEAS:powertypeInstance»

«IDEAS:typeInstance»

«tuplePlace1»

1

«tuplePlace2» 1

«IDEAS:typeInstance»

«tuplePlace1»1 «tuplePlace2» 1

«IDEAS:typeInstance»

«tuplePlace1»

1

«tuplePlace2»1

«IDEAS:superSubtype»

36

Figure 44 - Example instance of DisjointStateTypesSets

Constraint 1) is easily seen here: ‘DisjointStateTypesSets’ are a sub-type of
‘SetOfDisjointTypes’ and so its instances are disjoint types. Constraints 2) and 3) mentioned
above are quite complex and they are shown in detail in the worked example. Practical
considerations dictate that there is no need for the user to manually enter the lower level
details for these last two every time.

Taking away the details of the door example give us the pattern – shown in Figure 45.

Figure 45 - state type succession pattern

IDEAS ‘disjointStateSetsStateTypeSuccessionTypes’ pattern

The successions were illustrated by a grid in Figure 16 and IDEAS diagram in Figure 40 and
Figure 42. The IDEAS diagrams can be extended to show the finer details of the grid – Figure
46 is an example

 class 10 - Open-Close-Lock Door State Type Set

«IDEAS:Type»

OpenCloseLockDoorStateTypeSet

«IDEAS:Type»

disjointDoorStateOpenCloseLockStatesTemporalStageOfsSet

«IDEAS:Type»

{Doors}

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Type»

Indiv idualTypeSingleton

«IDEAS:Type»

doorOpenCloseLockStateTypeSuccessions

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Indi...

Doors

«IDEAS:Indi...

DoorOpen

«IDEAS:Indi...

DoorClosed

«IDEAS:Indi...

DoorLocked

«IDEAS:Type»

SetOfDisjointTypes

1

previousTypes

«place1Type»1

1..*

partsTypeType

«place2Type» 1
0..*

wholesTypeType

«place1Type»

«IDEAS:typeInstance»

partsType

«place2Type»

«IDEAS:typeInstance»

wholesType

«place1Type»

«IDEAS:superSubtype»

1

nextTypes

«place2Type»1

«IDEAS:typeInstance»

«IDEAS:typeInstance»

1

nextTypeTypes

«place2Type»1

1

previousTypeTypes

«place1Type»1

«IDEAS:typeInstance» «IDEAS:typeInstance» «IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

 class 10 - Disjoint State Types Sets

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Type»

ElementsTypeSingletons

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes1

previousTypeTypes

«place1Type»1

1

nextTypeTypes

«place2Type»1
0..*

wholesTypeType

«place1Type»

1..*

partsTypeType

«place2Type» 1

«IDEAS:superSubtype»

37

Figure 46 - Finer succession grid

What this diagram does is partition each state type in two ways; by its previous state and by
its next state. This, in effect, recreates the grid in the IDEAS diagram. From a row
perspective, the cells of the grid partition the state type – from a column perspective, the
cells of the grid partition the state type. For example, in Figure 47 the Open Door row is a
partition of the Open Door state type by previous state type– highlighted in green in the
figure. Similarly, the Open Door column is a partition of the Open Door state type by next
state type – highlighted in yellow in the figure.

OPEN DOOR CLOSE DOOR LOCKED DOOR

OPEN DOOR

CLOSE DOOR

LOCKED DOOR

NEXT STATEPREVIOUS
STATE

initial

OPEN-CLOSED-LOCKED DOOR STATES SUCCESSION GRID

final

partition
by

previous
state

partition by next state

Figure 47 - Grid cells as partitions of the state types.

This example illustrates another feature of the successions: there is an initial state and a
final state. At the individual level, we noted earlier that each chain has an initial state and a
final state - these are shown using arrows in Figure 13. At the type level, it is possible for
different instances to have different state types as initial or final state – in terms of the grid,
for more than one row (initial) or column (final) to have ticks. However, in this example,
there is only one state type that is ‘initial’ and one that is ‘final’.

IDEAS hierarchy of ‘DisjointStateTypesSets’
Figure 21 showed an example hierarchy of ‘DisjointStateTypesSets’, illustrating that there is
no general constraint on how many ‘DisjointStateTypesSets’ an Individual sub-type can

 class 20 - door open-close-lock state type successions - alternate

previousStateDoorOpen nextStateDoorOpen
nextStateDoorClosedpreviousStateDoorClosed

«IDEAS:Indi...

DoorOpen

«IDEAS:Indi...

DoorClosed
«IDEAS:Indi...

DoorLocked

«IDEAS:Indiv...

&ClosedNextStates

«IDEAS:Individual...

&OpenPrev iousStates

«IDEAS:Indi...

&OpenNextStates

«IDEAS:IndividualT...

&ClosedPrev iousStates

«IDEAS:Individ...

&LockedNextStates

«IDEAS:IndividualT...

&LockedPrev iousStates

«IDEAS:TupleType»

closeToOpenStateSuccessions

«IDEAS:TupleType»

openToCloseStateSuccessions

«IDEAS:TupleType»

closeToLockedStateSuccessions

«IDEAS:TupleType»

lockedToCloseStateSuccessions

«IDEAS:Type»

doorOpenCloseLockStateTypeSuccessions

«IDEAS:TupleType»

openToCloseStateSuccessionsAlternate

«IDEAS:TupleType»

closeToOpenStateSuccessionsAlternate

«IDEAS:TupleType»

lockedToCloseStateSuccessionsAlternate

«IDEAS:TupleType»

closeToLockedStateSuccessionsAlternate

«IDEAS:Indi...

&InitialStates «IDEAS:Indi...

&FinalStates

0..1

previous

«place1Type»1

previous

«place1Type»

«IDEAS:superSubtype»«IDEAS:superSubtype»«IDEAS:superSubtype»

«IDEAS:typeInstance»

0..1

previous

«place1Type» 1

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«place1Type»

0..1

next

«place2Type» 1

«IDEAS:typeInstance»

next

«place2Type»

previous

«place1Type»

«IDEAS:typeInstance»

0..1

next

«place2Type»1
0..1

next

«place2Type»1

«place1Type»

«tuplePlace1»

1

«IDEAS:superSubtype»

«tuplePlace2»
1

«tuplePlace1»

1

«place1Type» «place2Type»

«IDEAS:superSubtype»

«place2Type»

«tuplePlace2»

1

«IDEAS:superSubtype»

«place1Type»
«place2Type»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«place2Type»

«IDEAS:superSubtype»

38

have, provided they meet the criteria for ‘DisjointStateTypesSets’. The example in Figure 21
is translated into IDEAS format in Figure 48.

Figure 48 – Part of an individual sub-type’s hierarchy of ‘DisjointStateTypesSets’

IDEAS Multiple ‘orthogonal’ ‘DisjointStateTypesSets’ pattern
UML supports multiple orthogonal regions and this is illustrated in the chosen example
(Figure 8) with Door Alarmed and Door Open Close Lock. This UML feature is translated into
IDEAS format in Figure 49 as two ‘DisjointStateTypesSets’: AlarmedDoorStateTypeSet and
OpenCloseLockDoorStateTypeSet. This shows how the behaviour of an individual can be
characterised by a number of different ‘DisjointStateTypesSets’ patterns.

Figure 49 – Multiple ‘orthogonal’ DisjointStateTypesSets

 class 20 - Open-Close-Lock Door State Type Set / State Hierarchy 2

«IDEAS:Type»

OpenCloseLockDoorStateTypeSet

«IDEAS:Type»

OpenCloseDoorStateTypeSet

«IDEAS:Type»

{DoorOpen}

«IDEAS:Type»

{DoorClosed}
«IDEAS:Type»

{DoorLocked}

«IDEAS:Type»

OpenLockedDoorStateTypeSet

«IDEAS:Type»

CloseLockedDoorStateTypeSet

«IDEAS:Indi...

DoorOpen

«IDEAS:Indi...

DoorClosed

«IDEAS:Indi...

DoorLocked

«tuplePlace2»

1

«tuplePlace2»

1

«tuplePlace1»

1

«tuplePlace2»

1

«tuplePlace1»

1

«tuplePlace2»

1

«tuplePlace1»

1

«tuplePlace1»

1

«tuplePlace1»

1

«tuplePlace2»

1

«tuplePlace1»

1

«tuplePlace2»

1

«tuplePlace1»

1

«tuplePlace2»
1

«tuplePlace1»

1

«tuplePlace2»

1

«tuplePlace1»

1

«tuplePlace2»

1

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

 class 20 - Alarmed Door State Type Set

«IDEAS:Type»

OpenCloseLockDoorStateTypeSet

«IDEAS:Type»

disjointDoorOpenCloseLockStatesTemporalStageOfsSet

«IDEAS:Type»

{Doors}

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Type»

ElementsTypeSingletons

«IDEAS:Type»

doorOpenCloseLockStateTypeSuccessions

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Indi...

Doors

«IDEAS:Type»

disjointDoorAlarmedStatesTemporalStageOfsSet

«IDEAS:Type»

AlarmedDoorStateTypeSet

«IDEAS:Type»

doorAlarmedStateTypeSuccessions

«place1Type»

«IDEAS:typeInstance»
partsType

«place2Type»

«IDEAS:typeInstance»

«IDEAS:typeInstance»
«IDEAS:superSubtype»

1..*

partsTypeType

«place2Type» 1

«IDEAS:typeInstance»
«IDEAS:typeInstance»

wholesType

«place1Type»

1

previousTypes

«place1Type»1

«place1Type»

«IDEAS:typeInstance»

1

nextTypeTypes

«place2Type»1

1

previousTypeTypes

«place1Type»1

0..*

wholesTypeType

«place1Type»

«IDEAS:typeInstance»

«place2Type»

«IDEAS:typeInstance»

«place2Type»

1

nextTypes

«place2Type»1

39

IDEAS Nested ‘DisjointStateTypesSets’ pattern
UML supports the nesting of states in its state machines and this illustrated in the chosen
example (Figure 8) with Door Alarmed and its nested Alarm Levels One and Two. This is
translated into IDEAS format in Figure 50 as the ‘DisjointStateTypesSets’ as
AlarmedDoorStateTypeSet and its nested Alarmed Door Level One - Level Two State Type
Set.

Figure 50 - Example of a nested ‘DisjointStateTypesSets’ pattern

IDEAS ‘State Successions’ Inheritance pattern
The analysis described the way ‘DisjointStateTypesSets’ and so the state succession pattern
is inherited using the door example. This was shown graphically in Figure 22. This is
translated into IDEAS in Figure 51 and Figure 52. Figure 51 shows the ‘Open-Close Fridge
Door State Type Set’.

 class 50 - Alarmed Door Lev el One - Lev el Two State Type Set

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Type»

Alarmed Door

State Type Set

«IDEAS:Indi...

Door Alarmed

«IDEAS:Type»

{Door Alarmed}

«IDEAS:Type»

disjoint alarmed door lev el

one-lev el two states temporal

stage ofs set

«IDEAS:Type»

Alarmed Door Lev el

One - Lev el Two

State Type Set

«IDEAS:Indi...

Alarm Lev el One

«IDEAS:Indi...

Alarm Lev el Two

«IDEAS:Type»

alarmed door lev el one -

lev el two state type

successions

«IDEAS:Pow...

Indiv idualType

«place1Type»

previous

«place1Type»

«IDEAS:typeInstance»

«IDEAS:typeInstance»«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

next

«place2Type»

«IDEAS:typeInstance»

1..*

partsTypeType

«place2Type» 1

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

1

nextTypeTypes

«place2Type»1 1

previousTypeTypes

«place1Type»1

«place2Type»

40

Figure 51 - Open-Close Fridge Door State Type Set

Figure 52 shows how the pattern is inherited though sub-types of superSubType.

Figure 52 - example of specialisation

Providing a real world semantics for UML State Machine and its UML Components
It is possible to re-construct one from the bottom up real world analysis of example state
successions, a real world interpretation of UML StateMachine, and its components. UML

 class 10 - Open-Close Fridge Door State Type Set

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Type»

Open-Close Fridge

Door State Type Set

«IDEAS:Type»

fridge door

open-close state

type successions

«IDEAS:Indi...

Fridge Door Open

«IDEAS:Indi...

Fridge Door

Closed

«IDEAS:Tuple...

fridge door open to

close state

successions

«IDEAS:Tup...

stateSuccessions

«IDEAS:Tuple...

fridge door close to

open state

successions
«place1Type»

«IDEAS:typeInstance»
«IDEAS:superSubtype»

«place2Type»

«place1Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»
«IDEAS:typeInstance»«IDEAS:typeInstance»

«place2Type»

next types

«place2Type»

«IDEAS:typeInstance»«IDEAS:typeInstance»

1

nextTypeTypes

«place2Type»1 1

previousTypeTypes

«place1Type»1

previous types

«place1Type»

 class 40 - door - fridge door state type super-sub-types

«IDEAS:Type»

Open-Close Fridge

Door State Type Set

«IDEAS:Type»

fridge door

open-close state

type successions

«IDEAS:Type»

Open-Close-Lock

Door State Type

Set

«IDEAS:Type»

door open-close-lock

state type successions

«IDEAS:Tup...

door - fridge door

state type

super-sub-types

«IDEAS:TupleType»

door - fridge door state

type successions

super-sub-types

«IDEAS:Tup...

superSubtype

next types

«place2Type»

previous types

«place1Type»

1

next types

«place2Type»0..1 1

previous types

«place1Type»0..1

super-type type

«place1Type»

«IDEAS:superSubtype»

sub-type type

«place2Type»

sub-type type

«place2Type»

«IDEAS:superSubtype»

super-type type

«place1Type»

41

State Machines can be views as built from UML Regions, which in turn are built from UML
States – so States are a good foundation to start with.

UML State
From a term perspective, IDEAS and UML use of the term ‘State’ reflects different type
levels. In IDEAS, states are individual. In UML, State is an Individual type – a set or collection
of IDEAS states. In large part, this is motivated by IDEAS’s analysis methodology that
grounds the analysis in individuals, whereas the UML approach works at the specification
level. It provides examples, but these are at the type level and not grounded in individuals.

Instances of UML States are things such as Door Open – collections of state instances that
are disjoint and belong to the same owner. This implies that UML States are the set of all
these collections. In MODEM, we have named this ‘OwnedStateSets’. All the instances of
‘DisjointStateTypesSets’ are sub-types of this – as shown for
‘OpenCloseLockDoorStateTypeSet’ in Figure 53.

Figure 53 - instances of ‘DisjointStateTypesSets’ are sub-types of ‘OwnedStateSets’ example

 class 42 - open door temporal stages of doors

«IDEAS:Type»

OwnedStateSets

«IDEAS:Type»

stateSetOwners

«IDEAS:Indivi...

DoorOpen

«IDEAS:Indivi...

Doors

«IDEAS:TupleType»

openDoorTemporalStagesOfDoors

«IDEAS:Type»

OpenCloseLockDoorStateTypeSet

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

disjointDoorOpenCloseLockStatesTemporalStageOfsSet

«IDEAS:Type»

{Doors}

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Type»

ElementsTypeSingletons

«IDEAS:Powerty...

Indiv idualType

partsType

«place2Type»

«IDEAS:superSubtype»«IDEAS:typeInstance»

temporalWholes

«place1Type»«IDEAS:superSubtype»

«IDEAS:superSubtype»

temporalParts

«place2Type»

«IDEAS:superSubtype»

openDoorStates

«place2Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:superSubtype» «IDEAS:typeInstance»

1..*

partsTypeType

«place2Type»

1

«IDEAS:typeInstance»«IDEAS:typeInstance»

wholesType

«place1Type»

«IDEAS:typeInstance»

0..*

wholesTypeType

«place1Type»

«place1Type»

42

Figure 53 shows the OwnedStateSets’ (State) implicit ownership relation – in UML this is
inherited by the instances of State from their owning region, which inherits it from the
owning region or state machine.

At the general level, this cashes out as ‘DisjointStateTypesSets’ being a sub-type of the
powertype of ‘OwnedStateSets’ – as shown in Figure 54. The instances of
‘DisjointStateTypesSets’ are sub-sets of ‘OwnedStateSets’ that belong to a particular Region.
Architecturally, one can look at this as ‘DisjointStateTypesSets’ explicitly doing the work that
the Region partition does implicitly.

Figure 54 - ‘DisjointStateTypesSets’ is a sub-type of the powertype of ‘OwnedStateSets’

UML Region
The reconstruction suggests that a Region is a set of the state types – a
‘DisjointStateTypesSet’. Figure 55 illustrates this using the Door Open-Close-Locked Region
example.

Figure 55 - Door Open-Close-Lock Region example

 class 20 - Owned State Sets

«IDEAS:Type»

OwnedStateSets

«IDEAS:Type»

stateSetOwners

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

stateSetOwnersType

«IDEAS:Type»

OwnedStateSetsType

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Powerty...

Indiv idualType

«IDEAS:superSubtype»

temporalParts

«place2Type»

1..*

partsTypeType

«place2Type» 1

temporalWholes

«place1Type»

«IDEAS:

powertypeInstance»

«IDEAS:superSubtype»

«IDEAS:

powertypeInstance»

«IDEAS:superSubtype»

 class 32 - Door Alarmed Region

«IDEAS:Type»

{Doors}

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

instanceWiseDisjointStateTypeSets

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Indi...

Doors

«IDEAS:Type»

Alarmed Door

State Type Set

«IDEAS:Type»

door alarmed

state type

successions

«IDEAS:Type»

disjoint door alarmed

states

temporalWholePart set

AKA State Type

Regions

AKA Door Alarmed

State Type Regions

1..*

partsTypeType

«place2Type» 1

1

previousTypeTypes

«place1Type»1

1

nextTypeTypes

«place2Type»1

«IDEAS:typeInstance»

«IDEAS:typeInstance» «IDEAS:typeInstance»

«place1Type»

«place2Type»

«IDEAS:typeInstance»

«place1Type» «place2Type»

43

UML State Machine
StateMachines are best regarded as user selected (in other words, a view of a) set of regions
(‘DisjointStateTypesSets’) for a particular owning individual type. This structure closely
reflects the structure of the UML State Machine diagram (shown for example in Figure 7 and
Figure 8), where the state types are within the boundary of the state machine icon are
instances of the state machine. Once the state types are known, the successions can be
worked out. Figure 56 and Figure 57 illustrate this using the Door Open-Close-Locked Region
and Door Alarmed example. This is also an example of orthogonal and nested regions – as
the view includes the orthogonal Open-Close-Lock Door and Alarmed Door regions and
nested Alarmed Door and Alarmed Door Level One-Two regions.

Figure 56 - Door State Machine View

Figure 57 - Alternate State Machine Views

 class 10 - Door State Machine View

«IDEAS:TupleType»

stateMachineViewStateTypeOwners

«IDEAS:Type»

Door State

Machine View

«IDEAS:Type»

StateMachineViews

«IDEAS:TupleType»

stateMachineViewTypesRegionInstances

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

Open-Close-Lock

Door State Type

Set

«IDEAS:Type»

Alarmed Door

State Type Set

«IDEAS:Indi...

Doors

«IDEAS:Type»

Alarmed Door Lev el

One - Lev el Two

State Type Set

«IDEAS:Pow...

Indiv idualType

«IDEAS:typeInstance»

«tuplePlace2»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

state machine

«tuplePlace2»

owner

«tuplePlace1»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«tuplePlace1»

«IDEAS:superSubtype»

owners

«place1Type»

«tuplePlace1»

«tuplePlace2»

«IDEAS:typeInstance»

«tuplePlace1» «tuplePlace2»

«IDEAS:typeInstance»

types

«place1Type»
instances

«place2Type»

«IDEAS:typeInstance»

stateMachines

«place2Type»

«IDEAS:typeInstance»

 class 20 - Door State Machine Alternate Views

«IDEAS:TupleType»

stateMachineViewStateTypeOwners

«IDEAS:Type»

Door State

Machine View

«IDEAS:Type»

StateMachineViews

«IDEAS:TupleType»

stateMachineViewTypesRegionInstances

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

Open-Close-Lock

Door State Type

Set

«IDEAS:Type»

Alarmed Door

State Type Set

«IDEAS:Indi...

Doors

«IDEAS:Type»

Alarmed Door Lev el

One - Lev el Two

State Type Set

«IDEAS:Type»

Door State Machine

Alternate One View

«IDEAS:Type»

Door State Machine

Alternate Two View

«IDEAS:Pow...

Indiv idualType

«tuplePlace2»

«tuplePlace1»

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»

«tuplePlace1»

«tuplePlace2»

«IDEAS:typeInstance»

«tuplePlace1»

«tuplePlace2»

«IDEAS:typeInstance»«IDEAS:typeInstance»

«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace2»

«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace2»

«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace2»

«tuplePlace2»

«IDEAS:typeInstance»

stateMachines

«place2Type»

«IDEAS:typeInstance»

instances

«place2Type»

types

«place1Type»

«IDEAS:typeInstance»

«tuplePlace2»«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace1»

«tuplePlace1»

owners

«place1Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

owner

«tuplePlace1»

state machine

«tuplePlace2»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«tuplePlace2»

44

UML Repository –MODEM View - State Machine, Region and State
However, the UML state, region and state structure has some quirks, from a real world
perspective. There are several equivalent ways to model the same behaviour but in UML, in
each model, only one way can be used.

For example, in the real world there are domains where one wishes the same state type to
appear in different regions. In UML, one cannot do this in the same model except with a
workaround. However, one can do it in UML if these different regions are in different
models. The problem in UML is ‘re-using’ state types in more than one region – in one
model. Within a model, each modelling choice excludes the other choices.

Similarly, in UML one can model a domain as a single state machine, with several regions, or
also as several state machines each with one region or any combination in between this and
the original model. Each of these modelling choices can be modelled in UML – but only one
in any one UML model. Within a model, each choice excludes all the other choices. This is
the issue shown graphically in Figure 6 above.

Furthermore, there seems to be no feature of the real world that suggests which of these
state machines or regions is preferred – so the modelling choice is not motivated by real
world concerns.

If the state machines and regions in the various models all exist in the real world – then a
‘true’ model of the real world would allow one to include all of these in the model. One can
do this in the MODEM model.

However, UML does not allow this. These types of issues permeate the UML StateMachine
structure. The underlying issue here seems to be that UML regards the state machine and
region as kinds of repositories where their contents have to be in a single repository. This
leads to the question of which repository is the correct one – which as we noted above has
no correct answer. MODEM regards the State Machine and Region as views over the
repository where the same region can be in multiple state machine views and the same
state type in multiple Region views.

UML Transitions
UML Transitions respond to a similar treatment. In the UML specification, a transition is
described (p. 587) as follows:

“Description: A transition is a directed relationship between a source vertex and a
target vertex. It may be part of a compound transition, which takes the state
machine from one state configuration to another, representing the complete
response of the state machine to an occurrence of an event of a particular type.”

However, in UML a State is sub-type of Vertex, so some Transitions will link elements other
than Vertices. For our analysis, we are interested in those transitions that link States
(Owned State Sets). This introduces a delicate issue, one that also illustrates how UML as
constructed does not reflect real world semantics. In a particular StateMachine, there is no
requirement that there should be a direct transition between each State representing each
real world state type succession - this could be represented by a series of transitions.
However, in the cases where there is a series of transitions, it is technically possible to
represent the same domain with a different StateMachine that does have a direct transition

45

representing the real world state set succession. However, it is not possible in UML to treat
these State Machines as views over the same set of real world objects. Simplifying a little,
one can assume that UML Transitions include all the real world state set transitions– in
other words; UML Transitions is a super-type of stateSetTransitions. We show this in Figure
58.

Figure 58 - transitions and state set transitions

The pattern here is much like ‘State’. The instances of ‘stateSetTransitions’ range over the
transitions of all States (OwnedStateSets). The MODEM Successions map indirectly onto
these stateSetTransitions, as they are at different type levels. The instances of
‘disjointStateSetsStateTypeSuccessionTypes’ are sub-types of ‘stateSetTransitions’ – as
shown in the example in Figure 59.

Figure 59 – state set transations example

The inclusion of Compound Transition in a UML Region partitons them into the instances of
‘doorOpenCloseLockStateTypeSuccessions’. Architecturally, one can look at this as

 class 30 - transitions

«IDEAS:Type»

OwnedStateSets

«IDEAS:Type»

stateSetTransitions

«IDEAS:Type»

transitions

«IDEAS:Powertype»

stateSuccessionsType

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«place2Type»

«place1Type»

 class 40 - disjoint door open-close-lock states temporal stage ofs set

«IDEAS:Type»

OwnedStateSets

«IDEAS:Type»

stateSetOwners

«IDEAS:Indivi...

DoorOpen

«IDEAS:Indivi...

DoorClosed

«IDEAS:Indivi...

DoorLocked

«IDEAS:Indivi...

Doors

«IDEAS:TupleType»

openDoorTemporalStagesOfDoors

«IDEAS:TupleType»

closedDoorStatesTemporalStagesOfDoors

«IDEAS:TupleType»

lockedDoorStatesTemporalStagesOfDoors

«IDEAS:Type»

OpenCloseLockDoorStateTypeSet

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

disjointDoorOpenCloseLockStatesTemporalStageOfsSet

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Type»

stateSetTransitions

«IDEAS:Type»

doorOpenCloseLockStateTypeSuccessions

«IDEAS:TupleType»

closeToOpenStateSuccessions

«IDEAS:TupleType»

openToCloseStateSuccessions

«IDEAS:TupleType»

closeToLockedStateSuccessions

«IDEAS:TupleType»

lockedToCloseStateSuccessions

«IDEAS:Powertype»

TemporalWholePartType«IDEAS:Powerty...

Indiv idualType

next

«place2Type»

previous

«place1Type»

lockedDoorStates

«place2Type»

0..1

next

«place2Type»

1
0..1

previous

«place1Type»1
closedDoorStates

«place2Type»

0..1

next

«place2Type»

1
previous

«place1Type»

openDoorStates

«place2Type»

temporalWholes

«place1Type»

0..1

previous

«place1Type»1

«place1Type»

«IDEAS:superSubtype» «IDEAS:superSubtype»

temporalParts

«place2Type»

«place2Type»

«place1Type»

«IDEAS:superSubtype»«IDEAS:superSubtype»
«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

0..1

next

«place2Type»1

1

nextTypes

«place2Type»0..1

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»

1

previousTypeTypes

«place1Type»1

1

nextTypeTypes

«place2Type»1

«place1Type»

1

previousTypes

«place1Type»0..1

«place1Type»

partsType

«place2Type»

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance» «IDEAS:typeInstance»

«IDEAS:typeInstance»

46

‘doorOpenCloseLockStateTypeSuccessions’ explicitly doing the work that the Region
partition does implicititly. This pattern generalises to
doorOpenCloseLockStateTypeSuccessions’ being a sub-type of the powertype of
StateSetTransitions – as is shown in Figure 60.

Figure 60 – state set transitions pattern

UML Behaviour and BehaviouredClassifier
In UML, there is a zero-to-one association called ‘context’ between Behaviour and
BehaviouredClassifier. It is described in the specification (p. 446) as follows:

/context: BehavioredClassifier [0..1]

The classifier that is the context for the execution of the behavior. If the behavior is
owned by a BehavioredClassifier, that classifier is the context; otherwise, the context
is the first BehavioredClassifier reached by following the chain of owner
relationships.

This is the type of which the states are temporal parts. Within UML, the StateMachine’s
Regions’ States inherit this relationship.

Its BehavioredClassifier attribute is re-constructed as an association with the state machine
owner – ‘stateMachineStateTypeOwners’ in the IDEAS model. For example, the Door
StateMachine is the set of the two regions: Door Open-Close-Locked Region and Door
Alarmed Region. It is owned by the individual sub-type ‘Doors’ - as shown in Figure 61.

Figure 61 - Door Open Close Lock State Machine

 class 20 - Owned State Sets

«IDEAS:Type»

OwnedStateSets

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:Type»

OwnedStateSetsType

«IDEAS:Type»

disjointStateSetsStateTypeSuccessionTypes

«IDEAS:Type»

stateSetTransitions

«IDEAS:Type»

stateSetTransitionsType

«place2Type»

«place1Type»

1

nextTypeTypes

«place2Type»1

«IDEAS:

powertypeInstance»

«IDEAS:superSubtype»
«IDEAS:superSubtype»

«IDEAS:

powertypeInstance»

1

previousTypeTypes

«place1Type»1

 class 10 - Door State Machine

«IDEAS:Indivi...

Doors

«IDEAS:Type»

DoorOpenCloseLockRegion

«IDEAS:Type»

Regions

«IDEAS:TupleType»

stateMachineStateTypeOwners

«IDEAS:Type»

DoorStateMachine

«IDEAS:Type»

StateMachines

«IDEAS:TupleType»

stateMachineTypesRegionInstances

«IDEAS:Type»

DoorAlarmedRegion

«IDEAS:Powerty...

Indiv idualType

«IDEAS:typeInstance»
«IDEAS:typeInstance»

stateMachines

«place2Type»

owners

«place1Type»

stateMachine

«tuplePlace2»

owner

«tuplePlace1»

«IDEAS:typeInstance»

instances

«place2Type»

«IDEAS:typeInstance»

«tuplePlace1» «tuplePlace2»

«IDEAS:typeInstance»«IDEAS:typeInstance» «IDEAS:typeInstance»

«tuplePlace2»

«tuplePlace1»

types

«place1Type»

47

UML allows for both multiple StateMachines owned by the same individual sub-type –
where the regions ‘inherit’ this ownership. From a MODEM perspective, this relationship is
viewed at the ‘DisjointStateTypesSets’ (Region) level. If an individual type has one or more
‘DisjointStateTypesSets’, then each of them has the relation.

Mapping the Real World Semantics back to the UML State Machine

This mapping can serve a number of purposes. For those people familiar with UML is can
provide a route map into the MODEM real world semantics. From an audit perspective it
helps to ensure completeness, that the functionality of UML State Machines has been
captured in the MODEM model.

The relevant elements of Figure 38 - UML State Machines are mapped in earlier sections –
the relevant mappings are:

UML StateMachines MODEM Real World Semantics

StateMachine State Machine Views

Region DisjointStateTypesSets

State OwnedStateSets

Transition (sub-typed) stateSetTransition

/context: BehavioredClassifier stateMachineStateTypeOwners

There are also the following UML StateMachine types that need to be mapped:

 UML Initial Pseudostates,

 UML Terminate Pseudostates, and

 UML Final State.

UML Initial and Terminate Pseudostates and Final State
UML uses Initial Pseudostate, Terminate Pseudostate and Final State elements to mark the
start and end of behaviours (see the descriptions below). UML reifies these initial and final
states, and, once this is done, uses its transition notation to represent the transitions to and
from these states.

Entry and Exit ConnectionPointReferences (15.3.1 ConnectionPointReference – p. 544 – in
the specification) can be regarded as initial and final states, when the state machine is
considered as a sub-machine.

One of the purposes of these states is to mark the initial and final state – shown in the
‘initial’ row and ‘final’ column in the succession grid – see Figure 47. As the associated IDEAS
diagram (Figure 46) shows, these are best interpreted as sub-types of the state types, rather
than different types of states.

The initial pseudostate can be interpreted as the set of states that are the first state in the
temporal ordering and the final state as the last state in the temporal ordering. This is
shown graphically using arrows in the space-time map in Figure 12.

UML describes the initial pseudostate and a final state as follows.

 “Each region of a composite state may have an initial pseudostate and a final state.
A transition to the enclosing state represents a transition to the initial pseudostate in

48

each region. A newly-created object takes its topmost default transitions, originating
from the topmost initial pseudostates of each region. A transition to a final state
represents the completion of behaviour in the enclosing region. Completion of
behaviour in all orthogonal regions represents completion of behaviour by the
enclosing state and triggers a completion event on the enclosing state. Completion
of the topmost regions of an object corresponds to its termination.” p. 566

Figure 62 - UML Initial Pseudostate Icon

UML describes the Final State object as follows.

“A special kind of state signifying that the enclosing region is completed. If the
enclosing region is directly contained in a state machine and all other regions in the
state machine also are completed, then it means that the entire state machine is
completed.” p. 547

“When the final state is entered, its containing region is completed, which means
that it satisfies the completion condition. The containing state for this region is
considered completed when all contained regions are completed. If the region is
contained in a state machine and all other regions in the state machine also are
completed, the entire state machine terminates, implying the termination of the
context object of the state machine.” p. 548

Figure 63 - UML Final State Icon

UML can be seen as recognising that the Initial and Terminate Pseudostates are not states in
the real world by its use of the prefix ‘Pseudo-’. The real world semantics for Final State is
more problematic if one takes the UML text literally. This implies that the Region enters the
final state after the behaviour has completed – and, presumably stays in that state from
then onwards. Technically this is similar to the presentist3 notion of past – in other words; it
marks the behaviour as in the past. This is not a state in the sense we have been using here,
of a state that an object can be in, one of its temporal parts – as the state only comes into
existence after the Region has ceased to exist. This raises concerns about mixing presentist

3
 See http://plato.stanford.edu/entries/time/#PreEteGroUniThe for more details on presentism and

eternalism. IDEAS adopts an eternalist stance.

http://plato.stanford.edu/entries/time/#PreEteGroUniThe

49

and eternalist foundations and having multiple inconsistent senses of state in close
proximity.

In practical terms, it makes sense to keep things simple and straightforward and interpret
Final State as the set of final or end state in the chain of states for each state machine.

Interaction pattern – real world analysis

We start the analysis by giving some context - by reviewing what UML interaction diagrams
are.

UML Interaction Diagrams

In UML, an Interaction will have a number of lifelines. These lifelines will contain a number
of ExecutionSpecifications. These will be ordered. ExecutionSpecifications will contain
MessageOccurenceSpecifications which will be the send or receive end of a Message. The
following figures contain the diagrams that describe this.

Figure 64 - UML Specification "Figure 14.3"

Figure 65 - UML Specification "Figure 14.4"

50

Figure 66 - UML Specification "Figure 14.5"

Grounding the Interaction View analysis in ‘Eat Restaurant Meal’

We grounded the analysis in the ‘Eat Restaurant Meal’ Interaction example. We identified
the patterns initially in a particular instance of this: ‘Fred Eating Meal in Restaurant - 21st
Jan 2010’. We then generalised the pattern to the ‘Eat Restaurant Meal’ Interaction level
and then again to an Interaction View level. We follow this analysis path here, starting with
Participations in ‘Eat Restaurant Meal’.

Participations in ‘Eat Restaurant Meal’

In the ‘Eat Restaurant Meal’ Interaction example contains lifelines. The real world semantics
for this, as shown in the space-time map in Figure 24 is that these lifelines are participations
in the interaction – what MODEM calls interaction roles. Figure 67 shows these in IDEAS
format for the Eat Restaurant Meal interaction. It makes explicit how parts of the
participant are also parts of the interaction.

51

Figure 67 - Participation in Eat Restaurant Meal

Figure 68 shows this generalised and so the underlying pattern made explicit.

Figure 68 – Interaction Role - Participation pattern

‘Patron Roles in Eat Restaurant Meals State Machine View’

These Interaction Roles are also divided into states, which are part of a state machine. This
is shown in IDEAS format in Figure 69 for the Patron role. This also shows how the collection
of the states are a ‘DisjointStateTypesSets’ and part of a state machine view - the ‘Patron
Roles in Eat Restaurant Meals State Machine View’.

 class 10 - Eat Restaurant Meal

«IDEAS:Individual»

Fred Eating Meal in

Restaurant - 21st Jan

2010

«IDEAS:Indi...

Fred

«IDEAS:Indi...

Eat Restaurant

Meals

«IDEAS:Indi...

Patron Roles in

Eat Restaurant

Meals

«IDEAS:Tup...

eat meal whole

patron role part

«IDEAS:Indi...

Fred Patron Role

in Eat Meal

«IDEAS:Indi...

Waiter Roles in

Eat Restaurant

Meals

«IDEAS:Tup...

eat meal whole

waiter role part

«IDEAS:Individ...

Bob Waiter Role in

Eat Meal

«IDEAS:Indi...

Bob

«IDEAS:TupleType»

human being whole patron

in eat restaurant meal role

part

«IDEAS:TupleType»

human being whole waiter

in eat restaurant meal role

part

«IDEAS:Indi...

Indiv idual
«IDEAS:Tup...

wholePart

«IDEAS:Indi...

Person

«IDEAS:IndividualType»

AgentCapableOfResponsibility

«IDEAS:Indi...

Agent

«tuplePlace2»

«place2Type»

«place1Type»

«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace2»

«IDEAS:typeInstance»

«tuplePlace1»«tuplePlace2»

«IDEAS:typeInstance»

wholes

«place1Type»

«tuplePlace2»

«place2Type»

«tuplePlace1»

«IDEAS:typeInstance»

whole

«place1Type»

part

«place2Type»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«tuplePlace1»

«IDEAS:typeInstance»

«IDEAS:superSubtype» «IDEAS:superSubtype»

parts

«place2Type»

«IDEAS:superSubtype»

wholes

«place1Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«place1Type»

«place2Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

 class 10 - Eat Restaurant Meal

«IDEAS:Type»

Interactions

«IDEAS:Indi...

Eat Restaurant

Meals

«IDEAS:Indi...

Patron Roles in

Eat Restaurant

Meals

«IDEAS:Tup...

eat meal whole

patron role part

«IDEAS:Type»

InteractionParticipationRoles

«IDEAS:Type»

interactionWholeRolePartTypes

«IDEAS:Type»

indiv idualWholeIinteractionRolePartTypes

«IDEAS:Indi...

Waiter Roles in

Eat Restaurant

Meals

«IDEAS:Tup...

eat meal whole

waiter role part

«IDEAS:TupleType»

human being whole patron

in eat restaurant meal role

part

«IDEAS:TupleType»

human being whole waiter

in eat restaurant meal role

part

«IDEAS:Pow...

Indiv idualType

«IDEAS:Indi...

Indiv idual
«IDEAS:Tup...

wholePart

«IDEAS:Indi...

Person

«IDEAS:IndividualType»

AgentCapableOfResponsibility

«IDEAS:Indi...

Agent

«IDEAS:Pow...

WholePartType
wholeType

«place1Type»

«place2Type»

«place1Type»

wholes

«place1Type»

«place2Type»

«IDEAS:powertypeInstance»
«IDEAS:powertypeInstance»

whole

«place1Type»

part

«place2Type»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

partType

«place2Type»

parts

«place2Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:superSubtype» «IDEAS:superSubtype»

parts

«place2Type»

«IDEAS:superSubtype»

wholes

«place1Type»

«IDEAS:superSubtype»

wholes

«place1Type»

«IDEAS:superSubtype»

parts

«place2Type»

wholes

«place1Type»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«place1Type»

«place2Type»

«IDEAS:superSubtype» «IDEAS:superSubtype»

«IDEAS:superSubtype»

52

Figure 69 - Interaction Role States

The interaction role states are then further divided into instance-wise disjoint sub-states. In
UML these sub-states are message ends – this is not a constraint in MODEM. Figure 70
shows this for ‘Patron Orders Food’ – this is a limit case where these is only one sub-state.

Figure 70 - 'Patron Orders Food' sub-states

‘Patron Gives Food Order to Waiter’ - MODEM Interaction Roles State Interactions

The ‘Patron Gives (Sends) Food Order’ in Figure 70 is the send end of a state interaction
(message in UML –speak) that is received by ‘Waiter Takes (Receives) Food Order’ – the
state interaction is ‘Patron Gives Food Order to Waiter’. In the real world, the patron will say

 class 50 - Patron Roles in Eat Restaurant Meals State Machine View

«IDEAS:Type»

Patron Role in Eat

Restarant Meal Disjoint

State Types Set

«IDEAS:Type»

LinearlySucceededDisjointStateTypesSets

«IDEAS:Type»

Patron Giv es Food

Order State Disjoint

Types Set

«IDEAS:Type»

Patron Serv ed (Receiv es)

Wine Disjoint State Types

Set

«IDEAS:Type»

Patron Eats Meals Send

Receiv e Disjoint State

Types Set

«IDEAS:Type»

Patron Role in Eat Restaurant

Meals Send Receiv e Disjoint

State Types Set

«IDEAS:Type»

Patron Roles in Eat

Restaurant Meals

State Machine View

«IDEAS:Indi...

Patron Roles in

Eat Restaurant

Meals

«IDEAS:Type»

InteractionRoleStateMachineViews

«IDEAS:TupleType»

interactionRoleStateMachineViewTypesRegionInstances

«IDEAS:Type»

InteractionParticipationRoles

«IDEAS:TupleType»

interactionRoleStateMachineViewStateTypeOwners

«IDEAS:Type»

Eat Restaurant

Meal People

Roles View Set

«tuplePlace1»1

«tuplePlace1»

«tuplePlace2»

«IDEAS:typeInstance»

«tuplePlace2»

«tuplePlace1»

«IDEAS:typeInstance»

«tuplePlace1»

«tuplePlace2»

«IDEAS:typeInstance»

«tuplePlace1»

«tuplePlace2»

«tuplePlace1» «tuplePlace2»

«IDEAS:typeInstance»

instances

«place2Type»

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:superSubtype»«IDEAS:typeInstance»

«IDEAS:typeInstance»

«tuplePlace2» 1

types

«place1Type»«place2Type»«place1Type»

«IDEAS:superSubtype» «IDEAS:typeInstance» «IDEAS:typeInstance»«IDEAS:typeInstance»

 class 26 - Patron Giv es (Sends) Food Order

«IDEAS:Indi...

Patron Orders

Food

«IDEAS:Indi...

Fred-Patron

Orders Food

«IDEAS:Type»

{Patron Orders

Food}

«IDEAS:Type»

disjoint patron orders

food states

temporalWholePart set

«IDEAS:Type»

Patron Giv es Food

Order State Disjoint

Types Set

«IDEAS:Indi...

Patron Giv es

(Sends) Food

Order

«IDEAS:Individ...

Fred-Patron Giv es

(Sends) Food Order

«IDEAS:TupleType»

patron giv es food order

temporalWholePart patron

orders food

«IDEAS:Individ...

Patron Role in Eat

Restarant Meal

Temporal States

«IDEAS:Indi...

Indiv idual

«IDEAS:Tupl...

temporalWholePart

«IDEAS:superSubtype»

«tuplePlace2»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«place1Type» «place2Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«tuplePlace1»

«IDEAS:typeInstance»«IDEAS:typeInstance»

«place2Type»«place1Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

53

something to the waiter or the waiter will pour wine or serve food. The IDEAS
representation of this state interaction is shown in Figure 71.

Figure 71 - State Interaction

‘Eat Restaurant Meals People Role Interaction View’ - MODEM Interaction Views

The ‘Eat Restaurant Meals People Role Interaction View’ contains the ‘Eat Restaurant Meal
People Roles View Set’, which contains the interaction roles chosen for the view. It also
contains the ‘Eat Restaurant Meal Send-Receive Interacting State Types View Set’, which
contains the interaction state types chosen for the view. This is shown in Figure 72.

Figure 72 - ‘Eat Restaurant Meals People Role Interaction View’

MODEM Interaction type level

To capture the semantics of the Interaction diagram, this example needs to be generalised
up a type level. ‘{EatRestaurantMeals}’ along with its components are taken up to

 class 60 - Send-Receiv e Exchanges View

«IDEAS:Type»

Eat Restaurant Meal

Send-Receiv e Interacting

State Types View Set

«IDEAS:Indi...

Waiter Takes

(Receiv es) Food

Order

«IDEAS:Type»

eat restaurant meals

send-receiv e

exchanges v iew

«IDEAS:Tup...

Patron Giv es

Food Order to

Waiter

«IDEAS:Type»

Eat Restaurant Meal

Send Interacting State

Types View Set

«IDEAS:Type»

Eat Restaurant Meal

Receiv e Interacting

State Types View Set

«IDEAS:Tupl...

stateInteractions

«IDEAS:Indivi...

Patron Giv es

(Sends) Food Order

«IDEAS:superSubtype» «IDEAS:superSubtype»

«IDEAS:superSubtype»

«place1Type»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«place2Type»«place1Type»

«place2Type»

«IDEAS:typeInstance»

 class 40 - Eat Restaurant Meals People Role Interaction View

«IDEAS:Type»

{Eat Restaurant

Meals}

«IDEAS:Type»

Eat Restaurant Meals

Whole People Role

View Parts Set

«IDEAS:Type»

Eat Restaurant

Meals People Role

Interaction View

«IDEAS:Type»

Eat Restaurant

Meal People

Roles View Set

«IDEAS:Type»

People Whole Eat

Restaurant Meals People

View Role Parts Set

«IDEAS:Type»

Eat Restaurant Meal

Send-Receiv e Interacting

State Types View Set

«IDEAS:Type»

Patron Roles in Eat

Restaurant Meals

State Machine View

«IDEAS:Type»

Waiter Roles in Eat

Restaurant Meals

State Machine View

«tuplePlace2» 1

«tuplePlace2» 1

«tuplePlace2» 1

«tuplePlace1»

1

«tuplePlace2» 1

«tuplePlace1»

1

«tuplePlace2» 1

«tuplePlace1»

1

«tuplePlace2» 1

«tuplePlace1»

1

«tuplePlace1»1 «tuplePlace2» 1

«tuplePlace1»

1

«tuplePlace1»

1

«place1Type»

«place2Type»

«place2Type»

54

InteractionSingleton in Figure 73. ‘Eat Restaurant Meal Send-Receive Interacting State Types
View Set’ is taken up to ‘SendReceiveInteractingStateTypesViewSet’ in Figure 74. ‘Eat
Restaurant Meals People Role Interaction View’ is taken up to ‘InteractionView’ in Figure 75.

Figure 73 - Interaction Singletons

Figure 74 - SendReceiveInteractingStateTypesViewSet

 class 30 - Eat Restaurant Meals People Role View

«IDEAS:Indi...

Eat Restaurant

Meals

«IDEAS:Indi...

Patron Roles in

Eat Restaurant

Meals

«IDEAS:Tup...

eat meal whole

patron role part

«IDEAS:Indi...

Waiter Roles in

Eat Restaurant

Meals

«IDEAS:Tup...

eat meal whole

waiter role part

«IDEAS:TupleType»

human being whole patron

in eat restaurant meal role

part

«IDEAS:TupleType»

human being whole waiter

in eat restaurant meal role

part

«IDEAS:Type»

{Eat Restaurant

Meals}

«IDEAS:Type»

Eat Restaurant Meals

Whole People Role

View Parts Set

«IDEAS:Type»

Eat Restaurant

Meal People

Roles View Set

«IDEAS:Type»

People Whole Eat

Restaurant Meals People

View Role Parts Set

«IDEAS:Type»

{Human Beings}

«IDEAS:Type»

InteractionSingleton

«IDEAS:Type»

InteractionWholeRoleViewPartsSets

«IDEAS:Type»

InteractionRolesViewSets

«IDEAS:Type»

WholeInteractionRoleViewSetsParts

«IDEAS:Pow...

wholePartTypeType

«IDEAS:Type»

interactionWholeRolePartTypes

«IDEAS:Type»

indiv idualWholeIinteractionRolePartTypes

«IDEAS:Powertype»

InteractionParticipationRolesType

«IDEAS:Power...

Indiv idualTypeType

«IDEAS:Indi...

Person

«IDEAS:Tup...

wholePart

«IDEAS:Pow...

WholePartType

«place2Type»

«place2Type»

«IDEAS:typeInstance» «IDEAS:typeInstance»

«IDEAS:superSubtype»

«place2Type» «place1Type»

«place1Type» «place2Type»

«IDEAS:

powertypeInstance»

«IDEAS:superSubtype»

«place1Type»

«IDEAS:superSubtype»

wholesTypeType

«place1Type»

partsTypeType

«place2Type»

«IDEAS:superSubtype» «IDEAS:superSubtype»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«IDEAS:powertypeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»«IDEAS:typeInstance»«IDEAS:typeInstance»

parts

«place2Type»

«IDEAS:superSubtype»

wholes

«place1Type»

«IDEAS:typeInstance»«IDEAS:typeInstance»

«place1Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«place2Type» wholes

«place1Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«place2Type»

«place1Type»

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«place2Type»

 class Scratchpad - delete

«IDEAS:IndividualType»

Patron Giv es (Sends) Food Order

«IDEAS:Type»

SendReceiv eInteractingStateTypesViewSet

«IDEAS:Type»

Eat Restaurant Meal

Send-Receiv e Interacting State

Types View Set

«IDEAS:Indi...

Waiter Takes

(Receiv es) Food

Order

«IDEAS:Type»

SendReceiv eExchangesView

«IDEAS:Type»

eat restaurant meals

send-receiv e

exchanges v iew

«IDEAS:TupleTy...

Patron Giv es Food

Order to Waiter

«IDEAS:Type»

Eat Restaurant Meal

Send Interacting State

Types View Set

«IDEAS:Type»

Eat Restaurant Meal

Receiv e Interacting

State Types View Set

«IDEAS:Type»

SendInteractingStateTypesViewSet

«IDEAS:Type»

Receiv eInteractingStateTypesViewSet

«IDEAS:typeInstance»

«IDEAS:typeInstance»

«place2Type»

«IDEAS:typeInstance»

«place1Type»

«IDEAS:superSubtype»

«place1Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«place2Type»

«IDEAS:typeInstance»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

«place1Type» «place2Type»

«IDEAS:superSubtype»

«IDEAS:typeInstance»

55

Figure 75 – InteractionViews and Eat Restaurant Meals People Role Interaction View

MODEM Interaction View and components

This type generalisation reveals a pattern with several components. Firstly, there is the
‘InteractionView’ that reflects the choices of what the view should contain, which
interaction roles (lifelines) and then which state interactions (messages) between those
roles.

Figure 76 - InteractionViews

 class 60 - Send-Receiv e Exchanges View

«IDEAS:Type»

SendReceiv eInteractingStateTypesViewSet

«IDEAS:Type»

Eat Restaurant Meal

Send-Receiv e Interacting

State Types View Set

«IDEAS:Type»

Eat Restaurant

Meals People Role

Interaction View

«IDEAS:Type»

InteractionViews

«IDEAS:TupleType»

interactionViewTypesInstances

«IDEAS:TupleType»

interactionViewtypesSendReceiv eViewSetInstances

«tuplePlace2» 1

«IDEAS:typeInstance»

typeTypes

«place1Type»

«IDEAS:superSubtype»

instance types

«place2Type»

«tuplePlace1»1

«IDEAS:typeInstance» «IDEAS:typeInstance»

 class 40 - Eat Restaurant Meals People Role Interaction View

«IDEAS:Type»

InteractionSingleton

«IDEAS:Type»

InteractionWholeRoleViewPartsSets

«IDEAS:Type»

InteractionRolesViewSets

«IDEAS:Type»

WholeInteractionRoleViewSetsParts

«IDEAS:Type»

InteractionViews

«IDEAS:TupleType»

interactionViewTypesInteractionSingletonInstances

«IDEAS:TupleType»

interactionViewTypesInteractionWholeRoleViewPartSetsInstances

«IDEAS:TupleType»

interactionViewTypesInteractionRoleViewSetsInstances

«IDEAS:TupleType»

interactionViewTypesWholeInteractionRoleViewSetsPartsInstances

«IDEAS:TupleType»

interactionViewTypesInstances

«IDEAS:Type»

SendReceiv eInteractingStateTypesViewSet

«IDEAS:Type»

InteractionRoleStateMachineViews

«IDEAS:TupleType»

interactionViewtypesSendReceiv eViewSetInstances

«IDEAS:TupleType»

interactionViewTypesInteractionRoleStateMachineViewsInstances

«IDEAS:Tup...

typeInstance

«IDEAS:Type»

Type

«IDEAS:superSubtype»

instance types

«place2Type»

«IDEAS:superSubtype»

«place1Type»

instanceTypes

«place2Type»

«place2Type»

type

«place1Type»

«IDEAS:superSubtype»

instanceTypes

«place2Type»

instanceTypes

«place2Type»

«IDEAS:superSubtype»

instanceTypes

«place2Type»

«IDEAS:superSubtype»«IDEAS:superSubtype»

instanceTypes

«place2Type»

«IDEAS:superSubtype»

typeTypes

«place1Type»

«IDEAS:superSubtype»

«place2Type»

56

The ‘InteractionView’ contains the interaction participation components shown in Figure 77.
It also contains the ‘InteractionRoleStateMachineViews’ for each Interaction Role, which
contain the role state types selected for the view, shown in Figure 78. And the
‘SendReceiveInteractingStateTypesViewSet’, which contains the state interaction types
selected for the view, shown in Figure 79.

Figure 77 - Interaction View components

Figure 78 – InteractionRoleStateMachineViews

Figure 79 – SendReceiveInteractingStateTypesViewSet

Mapping the Real World Semantics back to the UML Interaction

As noted in the State Machine mapping, this can serve as a route map from UML into the
MODEM real world semantics or as an audit tool to check completeness.

 class 30 - Interaction Roles View Sets

«IDEAS:Type»

InteractionSingleton

«IDEAS:Type»

InteractionWholeRoleViewPartsSets

«IDEAS:Type»

InteractionRolesViewSets

«IDEAS:Type»

WholeInteractionRoleViewSetsParts

«IDEAS:Pow...

wholePartTypeType

«IDEAS:Powertype»

InteractionParticipationRolesType

«IDEAS:Pow...

InteractionsType

«IDEAS:Power...

Indiv idualTypeType

«IDEAS:superSubtype»

«place1Type» «place2Type»

«IDEAS:superSubtype»

«IDEAS:superSubtype»

«place2Type»

«IDEAS:superSubtype»

wholesTypeType

«place1Type»

partsTypeType

«place2Type»

«IDEAS:superSubtype»«IDEAS:superSubtype»

 class 40 - Interaction Role State Machine Views

«IDEAS:Type»

DisjointStateTypesSets

«IDEAS:TupleType»

stateMachineViewStateTypeOwners

«IDEAS:Type»

StateMachineViews

«IDEAS:TupleType»

stateMachineViewTypesRegionInstances

«IDEAS:Type»

LinearlySucceededDisjointStateTypesSets

«IDEAS:Type»

InteractionRoleStateMachineViews

«IDEAS:TupleType»

interactionRoleStateMachineViewTypesRegionInstances

«IDEAS:TupleType»

interactionRoleStateMachineViewStateTypeOwners

«IDEAS:Type»

InteractionParticipationRoles

«IDEAS:Pow...

Indiv idualType owners

«place1Type»

stateMachines

«place2Type»

instances

«place2Type»

types

«place1Type»

«IDEAS:superSubtype»«IDEAS:superSubtype»

instances

«place2Type»

«IDEAS:superSubtype»

types

«place1Type»

«IDEAS:superSubtype»

«place2Type»«place1Type»

«IDEAS:superSubtype»

 class 60 - Send-Receiv e Interacting State Types View Set

«IDEAS:Type»

SendReceiv eInteractingStateTypesViewSet

«IDEAS:Type»

SendReceiv eExchangesView

«IDEAS:Powertype»

stateInteractionsTypeType

«IDEAS:Type»

Receiv eInteractingStateTypesViewSet

«IDEAS:Type»

SendInteractingStateTypesViewSet

«IDEAS:Type»

InteractionViews

«IDEAS:TupleType»

interactionViewTypesInstances

«IDEAS:TupleType»

interactionViewtypesSendReceiv eViewSetInstances

«IDEAS:Power...

Indiv idualTypeType

«IDEAS:superSubtype»

«place1Type» «place2Type»

«IDEAS:superSubtype»

«IDEAS:superSubtype» «IDEAS:superSubtype»

typeTypes

«place1Type»

«IDEAS:superSubtype»

instance types

«place2Type»

57

The relevant mappings are:

UML Interactions MODEM Real World Semantics

Interaction (InteractionView / Interaction)

Lifeline Interaction Role

ExecutionSpecification (Temporal State)

MessageOccurenceSpecification (Temporal State)

Message StateInteractionType

Brackets indicate the mappings are not direct.

UML Interaction
UML’s description for an Interaction is: “An interaction is a unit of behavior that focuses on
the observable exchange of information between ConnectableElements.” Its semantics is:
“Interactions are units of behavior of an enclosing Classifier. Interactions focus on the
passing of information with Messages between the ConnectableElements of the Classifier.”

The analysis shows that the UML Interaction encompasses both the Interaction itself (a unit
of behaviour) and the Interaction View (the “observable exchange of information” from that
view). There is no mechanism within UML to distinguish the two. Hence, if we were to
consider the ‘Eat Restaurant Meal’ Interaction from different perspectives – for example,
the food and wine perspective – then in UML this would be a different interaction. Whereas
in the real world (and in MODEM), it is a different view over the same underlying
interaction.

UML Lifeline
UML’s description for a Lifeline is: “A lifeline represents an individual participant in the
Interaction.” Its semantics is: “The order of OccurrenceSpecifications along a Lifeline is
significant denoting the order in which these OccurrenceSpecifications will occur. ... The
semantics of the Lifeline (within an Interaction) is the semantics of the Interaction selecting
only OccurrenceSpecifications of this Lifeline.”

The UML lifeline directly corresponds to the MODEM Interaction Role. The analysis clarifies
the mereology of the participation of something in the Interaction – it is the participating
part of the partipant. The Interaction View chooses which Interaction Roles appear in the
view.

UML ExecutionSpecification
UML’s description for a Lifeline is: “An ExecutionSpecification is a specification of the
execution of a unit of behavior or action within the Lifeline. The duration of an
ExecutionSpecification is represented by two ExecutionOccurrenceSpecifications, the start
ExecutionOccurrenceSpecification and the finish ExecutionOccurrenceSpecification.” Its
semantics is: “The trace semantics of Interactions merely see an Execution as the trace
<start, finish>. There may be occurrences between these. Typically the start occurrence and
the finish occurrence will represent OccurrenceSpecifications such as a receive
OccurrenceSpecification (of a Message) and the send OccurrenceSpecification (of a reply
Message).”

58

From a real world perspective, this is a state type of the lifeline (interaction role). Where the
state types in a lifeline form a state machine view. The interaction view not only selects the
lifelines, it selects which state types in the lifeline appear in the view. A different view may
select the same lifeline but a different set of state types. In UML this would need to be a
different interaction – in MODEM a different view over the same interaction.

UML MessageOccurenceSpecification
UML’s description for a MessageOccurenceSpecification is: “Specifies the occurrence of
events, such as sending and receiving of signals or invoking or receiving of operation calls. A
message occurrence specification is a kind of message end. ...”

From a real world perspective, this is a state type of the ExecutionSpecification and hence
an indirect state type of the lifeline (interaction role). Where the state types in the
ExecutionSpecification are nested regions in the lifeline state machine view. The interaction
view will select the state machine view, and so select the nested state types. A different
view may select the same lifeline and ExecutionSpecification but a different set of nested
state types. In UML this would need to be a different interaction – in MODEM a different
view over the same interaction.

UML Message
UML’s description for a Lifeline is: “A Message defines a particular communication between
Lifelines of an Interaction.... A Message associates normally two OccurrenceSpecifications -
one sending OccurrenceSpecification and one receiving OccurrenceSpecification. ” Its
semantics is: “The semantics of a complete Message is simply the trace <sendEvent,
receiveEvent>....”

Communication is interpreted generously here. It reflects any kind of causal dependency
between the interaction roles – for example, the pouring of wine or the serving of food. It is
not restricted to the passing of information.

In UML the message associates a sending OccurrenceSpecification with a receiving
OccurrenceSpecification . The real world interpretation of this, is of a sending state of one
interaction role causing a receiving state in another (possibly the same) interaction role; in
other words, of a causal relationship between these two states.

Summary

In this section, the real world analysis in the second section has been formalised into IDEAS
MODEM models. In addition a mapping from UML to MODEM has been given. This has
highlighted the real world semantic variation points.

Real world semantic variation points
One can understand these variation points better if they are put into context. Both UML’s
State Machine and Interaction diagram structures are creatures of their history. The two
were included in UML, but not integrated which led to some of the variation we have found.

Furthermore, the StateMachine/Region structure is a result of its development history. It
started out as an extension to the Harel Statechart with various features added over time,
including orthogonal regions. It was also strongly influenced by the requirement for an

59

executable behaviour specification. The following comments need to be read with this in
mind.

Diagram versus repository-centric architecture
Broadly speaking, UML State Machines and Interactions partition behaviour into stove piped
silos. States in one partition cannot appear in the other partition. Furthermore, these
partitions are separated from other UML structures, that mean State Machines, Interactions
and States cannot, for example, be generalised or specialised.

Within State Machines, StateMachines and Regions further partition behaviour into smaller
silos. Each StateMachine specifies the behaviour in its silo. Within the StateMachine silos,
behaviour is further partitioned into regions. One consequence of this is (as noted earlier)
that each state can only appear in each Regionsilo, and so each StateMachine silo once.

In the MODEM architecture, there are not these partitions. For example, the underlying
state succession behaviour is a pattern within a much more closely inter-linked network of
behaviour.

Another way of explaining this is that UML has a diagram-centric approach, where each
diagram is a direct representation of a segmented part of a repository. MODEM has a
diagram-as-view approach, where the view (state machine interaction) looks at a type of
pattern in the underlying repository – and the same objects can appear in a number of
views.

Arbitrary structures - from the perspective of real world semantics
As earlier comments in the text have indicated, UML’s StateMachine contains arbitrary
structures (from the perspective of real world semantics). We looked at an example (Figure
4) where one can model part of an enterprise as a single state machine, with several regions
or several state machines each with one region or any combination in between – and each
modelling choice excludes the other choices. It is clearly pointless to ask which of these
better reflects the real world, as this is not the point. The differences are just modelling
structures with no real world equivalents, they are (from a real world perspective) arbitrary.
On the other hand, MODEM has a clear real world semantics, which reflects real patterns in
the world.

Artificial constraints
UML’s partitioning approach introduces some artificial constraints. One example is the
specialisation of state machines with a restricted set of states in one example – illustrated in
Figure 5 and Figure 52. Another is the individual sub-type’s hierarchy of
‘DisjointStateTypesSets’ illustrated in Figure 48. While there are more or less convoluted
workarounds to these constraints, the result is a distorted picture of the real world.

Modelling framework trade-offs
The choice of a modelling framework involves trade-offs – and these will depend upon the
requirements. While UML has an overriding requirement for an executable behaviour
specification, EA has a strong requirement for a clear real world semantics. The different
requirements will lead to different assessments of the benefits and costs in the trade-off –
and so different rational decisions. EA’s requirement for a clear real world semantics is

60

directly reflected in the MODEM structures. Whether UML’s requirements explain and
justify their choices on these issues is outside the scope of this work.

In addition, UML was designed without the help of a top ontology. Introducing a top
ontology changes the shape of the trade-offs. Further work may well show that there is no
need to choose between a clear real world semantics and an executable behaviour
specification. Indeed, it may turn out that a clear real world semantics is a better basis for
an executable behaviour specification.

61

Appendices

Appendix A – MODAF UML Behaviour Scope

Appendix B – State diagram as a mathematical structure – example definition

Appendix C – State machines as a formal structure in the UML Superstructure Specification

62

Appendix A – MODAF UML Behaviour Scope

This appendix provides an overview of the current uses of UML Behaviour in MODAF.

This is a summary of the four views that use UML Behaviour

View Name Used for Data objects

OV-6b Operational
State
Transition
Description

Analysis of business events.

Behavioural analysis.

Identification of constraints
(input to SRD).

States (each associated with a
mission, node or operational
activity.)

State transitions (each
associated with an event).

OV-6c Operational
Event-Trace
Description

Analysis of operational events.

Behavioural analysis.

Identification of non-functional
user requirements (input to
URD).

Operational test scenarios.

 Lifelines (each associated with
a Node).

SV-10b Resource
State
Transition
Description

Definition of states, events and
state transitions (behavioural
modelling).

Identification of constraints
(input to System Requirements
Document).

Resources.

States (associated with a
resource or function).

State transitions (each
associated with an event)

SV-10c Resource
Event Trace
Description

Analysis of resource events
impacting operation.

Behavioural analysis.

Identification of non-functional
system requirements (input to
System Requirement

Lifelines (each associated with a
functional resource or a system
port).

63

Document).

From http://www.mod.uk/NR/rdonlyres/E631B417-8FB1-4D0D-AE96-
6065AED1345F/0/20090216ViewsummaryU.pdf - © Crown Copyright 2004-2010

The following are examples of the views provided by the MOD (© Crown Copyright 2004-
2010).

Figure 80 - OV-6b example

http://www.mod.uk/NR/rdonlyres/E631B417-8FB1-4D0D-AE96-6065AED1345F/0/20090216ViewsummaryU.pdf
http://www.mod.uk/NR/rdonlyres/E631B417-8FB1-4D0D-AE96-6065AED1345F/0/20090216ViewsummaryU.pdf

64

Figure 81 - OV-6c example

Figure 82 - OV-6c example

65

Figure 83 - OV-6C - Services example

From http://www.mod.uk/NR/rdonlyres/97A0CD8D-3673-4DF4-A754-
0AFB5CD010BB/0/20100426MODAFOVViewpoint1_2_004U.pdf - © Crown Copyright 2004-
2010

Figure 84 - SV-10b example

http://www.mod.uk/NR/rdonlyres/97A0CD8D-3673-4DF4-A754-0AFB5CD010BB/0/20100426MODAFOVViewpoint1_2_004U.pdf
http://www.mod.uk/NR/rdonlyres/97A0CD8D-3673-4DF4-A754-0AFB5CD010BB/0/20100426MODAFOVViewpoint1_2_004U.pdf

66

Figure 85 – Systems Event-Trace Description example

From http://www.mod.uk/NR/rdonlyres/8FF14D0F-90DB-4CC8-B8B1-
1D03538A478F/0/20100426MODAFSVViewpointV1_2_004U.pdf. - © Crown Copyright
2004-2010

http://www.mod.uk/NR/rdonlyres/8FF14D0F-90DB-4CC8-B8B1-1D03538A478F/0/20100426MODAFSVViewpointV1_2_004U.pdf
http://www.mod.uk/NR/rdonlyres/8FF14D0F-90DB-4CC8-B8B1-1D03538A478F/0/20100426MODAFSVViewpointV1_2_004U.pdf

67

Appendix B – State diagram as a mathematical structure – example
definition

A classic form of a state diagram for a finite state machine is a directed graph with the
following elements (Q, Σ, Z, δ, q0 ,F):

 States Q: a finite set of vertices normally represented by circles and labelled with
unique designator symbols or words written inside them;

 Input symbols Σ: a finite collection of input symbols or designators;

 Output symbols Z: a finite collection of output symbols or designators;

The output function ω represents the mapping of ordered pairs of input symbols and states
onto output symbols, denoted mathematically as ω : Σ × Q→ Z.

 Edges δ: represent the "transitions" between two states as caused by the input
(identified by their symbols drawn on the "edges"). An 'edge' is usually drawn as an
arrow directed from the present-state toward the next-state. This mapping describes
the state transitions that is to occur on input of a particular symbol. This is written
mathematically as δ : Σ × Q → Q

 Start state q0: The start state q0 ∈ Q is usually represented by an arrow with no origin
pointing to the state. In older texts, the start state is not shown and must be inferred
from the text.

 Accepting state(s) F: If used, for example for accepting automata, F ∈ Q is the
accepting state. It is usually drawn as a double circle. Sometimes the accept state(s)
function as "Final" (halt, trapped) states.

See:

Taylor Booth (1967) Sequential Machines and Automata Theory, John Wiley and Sons, New
York.

John Hopcroft and Jeffrey Ullman (1979) Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley Publishing Company, Reading Mass, ISBN 0-201-02988-X

68

Appendix C – State machines as a formal structure in the UML
Superstructure Specification

The UML Specification for the most part treats state machines as a formal structure. Where
a real world semantics is discussed, this is often done informally. The extracts below from
the UML Superstructure Specification and a wiki entry describing UML State Machines are
intended to give a flavour of this formal description – and the paucity of real world
semantics.

Extracts

Description

A region is an orthogonal part of either a composite state or a state machine. It
contains states and transitions.

p. 563 - Section 15.3.10 Region (from BehaviorStateMachines) - UML Superstructure
Specification, v2.3

Notation

A composite state or state machine with regions is shown by tiling the graph region
of the state/state machine using dashed lines to divide it into regions. Each region
may have an optional name and contains the nested disjoint states and the
transitions between these. The text compartments of the entire state are separated
from the orthogonal regions by a solid line.

p. 565 - Section 15.3.10 Region (from BehaviorStateMachines)

Composite state

A composite state either contains one region or is decomposed into two or more
orthogonal regions. Each region has a set of mutually exclusive disjoint subvertices
and a set of transitions. A given state may only be decomposed in one of these two
ways. In Figure 15.35 on page 575, state CourseAttempt is an example of a
composite state with a single region, whereas state “Studying” is a composite state
that contains three regions

p.566 - Section 15.3.11 State (from BehaviorStateMachines, ProtocolStateMachines) - UML
Superstructure Specification, v2.3

15.3.12 StateMachine (from BehaviorStateMachines)

State machines can be used to express the behavior of part of a system. Behavior is
modeled as a traversal of a graph of state nodes interconnected by one or more
joined transition arcs that are triggered by the dispatching of series of (event)
occurrences. During this traversal, the state machine executes a series of activities
associated with various elements of the state machine.

...

Description

A state machine owns one or more regions, which in turn own vertices and
transitions.

69

The behaviored classifier context owning a state machine defines which signal and
call triggers are defined for the state machine, and which attributes and operations
are available in activities of the state machine. Signal triggers and call triggers for the
state machine are defined according to the receptions and operations of this
classifier.

As a kind of behavior, a state machine may have an associated behavioral feature
(specification) and be the method of this behavioral feature. In this case the state
machine specifies the behavior of this behavioral feature. The parameters of the
state machine in this case match the parameters of the behavioral feature and
provide the means for accessing (within the state machine) the behavioral feature
parameters.

A state machine without a context classifier may use triggers that are independent of
receptions or operations of a classifier, i.e., either just signal triggers or call triggers
based upon operation template parameters of the (parameterized) statemachine.

p.579 - Section 15.3.12 StateMachine (from BehaviorStateMachines)- UML Superstructure
Specification, v2.3

To relate this concept to programming, this means that instead of recording the
event history in a multitude of variables, flags, and convoluted logic, you rely mainly
on just one state variable that can assume only a limited number of a priori
determined values (e.g., two values in case of the keyboard). The value of the state
variable crisply defines the current state of the system at any given time. The
concept of state reduces the problem of identifying the execution context in the
code to testing just the state variable instead of many variables, thus eliminating a
lot of conditional logic. Moreover, switching between different states is vastly
simplified as well, because you need to reassign just one state variable instead of
changing multiple variables in a self-consistent manner.

States - http://en.wikipedia.org/wiki/UML_state_machine

http://en.wikipedia.org/wiki/UML_state_machine

